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Abstract:  Factorization of multi-dimensional (M-D) polynomial matrices is an effective tool which 

finds different applications. One of them is effective implementation of M-D multirate systems. The 
factorization significantly reduces the number of computations and allows one to design filter banks 
with ‘good’ coefficients (from implementation point of view). 

 
1. Introduction 
There are different ways to factor M-D polynomial matrices.  For example N.K. Bose, C. 

Charoenlarpnopparut, and Z. Lin have looked at factoring into two factors where one is prime in some sense 
[1, 3, 4]. Guiver-Bose showed how to implement primitive factorization of bivariate matrices using 
computations in the ground field only. Putting a matrix into the Smith normal form yields a factorization into a 
product of elementary matrices and a diagonal matrix. Factorization into elementary matrices might be based 
on Suslin’s Stability Theorem (SST).  

SST states that theoretically every 3x3 or larger square polynomial matrix with determinant that 
equals one can be factored into product of elementary matrices. An algorithm by H. Park and C. Woodburn 
exists for SST, but the algorithm is not practical, has not yet implemented, and yields many factors [5, 6].  
The local case subalgorithm of H. Park and C. Woodburn can sometimes be applied to yield a polynomial 
solution. It has been implemented in Maple and progress is being made in improving the implementation. 
Other heuristic methods, for example one modeled after Gaussian Elimination, sometimes work. 

Techniques may also be applied to some polynomial matrices with determinant not equal to one to 
yield factorizations with “mostly” elementary matrix factors [9]. Such a technique is given in this paper. 

 
2. Factorization of M-D polynomial polyphase matrices 
Any M-channel filter bank is represented by MxM polyphase polynomial matrices [2, 7, 8, 10]. The 

polyphase matrix may be factored into a product of elementary and diagonal matrices by application of a 
Gaussian elimination procedure (an elementary matrix eij(f) is a matrix which coincides with the identity 
except for possibly a single off-diagonal entry f in the ij-position). 

The main reasons behind the factorization of the polyphase matrices are: to reduce the number of 
required computations (additions, multiplications) and to obtain ‘good’ coefficients (integers, powers of two 
and so on) for the filters. 

As a result, the following factorization in 2-D case (for N = 1 and M = 1 - see [8, 9]) was obtained: 
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2 and N = M = 3. It should be mentioned that this procedure may be applied for any values of N and M. 
In the 3-D case the result is:  
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coefficients are powers of two. 
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3. Comparison of operations number 
The necessary numbers of computations for both – non-factorized and factorized cases - are given 

in tables 1 and 2 below. It is evident that the factorization of the polyphase polynomial matrices has a really 
big impact on the computation speed (see fig. 1). The fact that the coefficients of the multipliers may be 
powers of two is also quite important. In the tables * denotes NO factorization and ** - FACTORED. 

N M 
Addition

s Multiplic. 
Operation

s 
Gai
n 

    * ** * ** * ** */** 
1 1 14   8   22     

      6   3   9 
2,4
4 

2 2 50   34   84     

      
1
4   5   19 

4,4
2 

3 3 110   110   220     

      
3
0   

2
9   59 

3,7
3 

4 4 194   194   388     

      
5
4   

5
3   107 

3,6
3 

5 5 302   302   604     

      
8
6   

8
5   171 

3,5
3 

 
Table 1: Comparison of non-factored and factored polyphase matrices (2-D case) 

 
N M Additions Multiplic. Operations Gain 
    * ** * ** * ** */** 
1 1 90   70   160     
      28   15   43 3,72 
2 2 480   412   892     
      124   79   203 4,39 
3 3 1232   1236   2468     
      144   147   291 8,48 

 
Table 2: Comparison of non-factored and factored polyphase matrices (3-D case) 

 
Conclusions 
The method for the design of 2-D and 3-D FBs with the desired properties based on polynomial 

approaches are given. Bernstein polynomials allow one to design analytically the polyphase polynomial 
matrices. The factorization of these matrices speeds up the computation rate. 
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Fig.1 Comparison of non-factorized and factorized polyphase matrices (2-D case) 

 


