
1

8051 Tutorial

(C) Copyright 1997, 1998, 1999 by Vault Information Services. All Rights Reserved.
http:\\www.8052.com

Contents

8051 TUTORIAL: INTRODUCTION ...1

8051 TUTORIAL: TYPES OF MEMORY ..2

8051 TUTORIAL: SFRS ..5

8051 TUTORIAL: BASIC REGISTERS ...9

8051 TUTORIAL: ADDRESSING MODES ..11

8051 TUTORIAL: PROGRAM FLOW...13

8051 TUTORIAL: INSTRUCTION SET, TIMING, AND LOW-LEVEL INFO ...15

8051 TUTORIAL: TIMERS ...16

8051 TUTORIAL: SERIAL COMMUNICATION...22

8051 TUTORIAL: INTERRUPTS..25

8051 Tutorial: Introduction

Despite it’s relatively old age, the 8051 is
one of the most popular microcontrollers in use
today. Many derivative microcontrollers have since
been developed that are based on--and
compatible with--the 8051. Thus, the ability to
program an 8051 is an important skill for anyone
who plans to develop products that will take
advantage of microcontrollers.

Many web pages, books, and tools are
available for the 8051 developer.

I hope the information contained in this
document/web page will assist you in mastering
8051 programming. While it is not my intention that
this document replace a hardcopy book purchased
at your local book store, it is entirely possible that
this may be the case. It is likely that this document
contains everything you will need to learn 8051
assembly language programming. Of course, this
document is free and you get what you pay for so
if, after reading this document, you still are lost you
may find it necessary to buy a book.

This document is both a tutorial and a
reference tool. The various chapters of the
document will explain the 8051 step by step. The
chapters are targeted at people who are
attempting to learn 8051 assembly language

programming. The appendices are a useful
reference tool that will assist both the novice
programmer as well as the experienced
professional developer.

This document assumes the following:
• A general knowledge of programming.
• An understanding of decimal, hexidecimal, and

binary number systems.
• A general knowledge of hardware.

That is to say, no knowledge of the 8051
is assumed--however, it is assumed you’ve done
some amount of programming before, have a
basic understanding of hardware, and a firm grasp
on the three numbering systems mentioned above.
The concept of converting a number from
deciminal to hexidecimal and/or to binary is not
within the scope of this document--and if you can’t
do those types of conversions there are probably
some concepts that will not be completely
understandable.
This document attempts to address the need of
the typical programmer. For example, there are
certain features that are nifty and in some cases
very useful--but 95% of the programmers will
never use these features.

2

8051 Tutorial: Types of Memory

The 8051 has three very general types of
memory. To effectively program the 8051 it is

necessary to have a basic understanding of these
memory types.

On-Chip Memory refers to any memory
(Code, RAM, or other) that physically exists on the
microcontroller itself. On-chip memory can be of
several types, but we'll get into that shortly.

External Code Memory is code (or
program) memory that resides off-chip. This is
often in the form of an external EPROM.

External RAM is RAM memory that
resides off-chip. This is often in the form of
standard static RAM or flash RAM.

Code Memory

Code memory is the memory that holds
the actual 8051 program that is to be run. This
memory is limited to 64K and comes in many
shapes and sizes: Code memory may be found
on-chip, either burned into the microcontroller as
ROM or EPROM. Code may also be stored
completely off-chip in an external ROM or, more
commonly, an external EPROM. Flash RAM is
also another popular method of storing a program.
Various combinations of these memory types may
also be used--that is to say, it is possible to have
4K of code memory on-chip and 64k of code
memory off-chip in an EPROM.

When the program is stored on-chip the
64K maximum is often reduced to 4k, 8k, or 16k.

This varies depending on the version of the chip
that is being used. Each version offers specific
capabilities and one of the distinguishing factors
from chip to chip is how much ROM/EPROM
space the chip has.

However, code memory is most commonly
implemented as off-chip EPROM. This is
especially true in low-cost development systems
and in systems developed by students.

Programming Tip: Since code memory is
restricted to 64K, 8051 programs are limited to 64K.
Some assemblers and compilers offer ways to get
around this limit when used with specially wired
hardware. However, without such special compilers and
hardware, programs are limited to 64K.

External RAM

As an obvious opposite of Internal RAM,
the 8051 also supports what is called External
RAM. As the name suggests, External RAM is any
random access memory which is found off-chip.
Since the memory is off-chip it is not as flexible in
terms of accessing, and is also slower. For
example, to increment an Internal RAM location by
1 requires only 1 instruction and 1 instruction
cycle. To increment a 1-byte value stored in
External RAM requires 4 instructions and 7
instruction cycles. In this case, external memory is
7 times slower!

What External RAM loses in speed and
flexibility it gains in quantity. While Internal RAM is
limited to 128 bytes the 8051 supports External
RAM up to 64K.

Programming Tip: The 8051 may only
address 64k of RAM. To expand RAM beyond this limit
requires programming and hardware tricks. You may
have to do this "by hand" since many compilers and
assemblers, while providing support for programs in
excess of 64k, do not support more than 64k of RAM.
This is rather strange since it has been my experience
that programs can usually fit in 64k but often RAM is
what is lacking. Thus if you need more than 64k of RAM,
check to see if your compiler supports it-- but if it
doesn't, be prepared to do it by hand.

3

On-Chip Memory.

As mentioned at the beginning of this
chapter, the 8051 includes a certain amount of on-
chip memory. On-chip memory is really one of two

(SFR) memory. The layout of the 8051's internal
memory is presented in the following memory
map:

As is illustrated in this map, the 8051 has a
bank of 128 bytes of Internal RAM. This Internal RAM
is found on-chip on the 8051 so it is the fastest RAM
available, and it is also the most flexible in terms of
reading, writing, and modifying it’s contents. Internal
RAM is volatile, so when the 8051 is reset this
memory is cleared.

The 128 bytes of internal ram is subdivided
as shown on the memory map. The first 8 bytes (00h
- 07h) are "register bank 0". By manipulating certain
SFRs, a program may choose to use register banks
1, 2, or 3. These alternative register banks are
located in internal RAM in addresses 08h through
1Fh.

We'll discuss "register banks" more in a later
chapter. For now it is sufficient to know that they "live"
and are part of internal RAM.

Bit Memory also lives and is part of internal
RAM. We'll talk more about bit memory very shortly,
but for now just keep in mind that bit memory actually
resides in internal RAM, from addresses 20h through
2Fh.

The 80 bytes remaining of Internal RAM, from
addresses 30h through 7Fh, may be used by user
variables that need to be accessed frequently or at
high-speed. This area is also utilized by the
microcontroller as a storage area for the operating
stack. This fact severely limits the 8051’s stack since,
as illustrated in the memory map, the area reserved
for the stack is only 80 bytes--and usually it is less
since this 80 bytes has to be shared between the
stack and user variables.

Register Banks

The 8051 uses 8 "R" registers which are
used in many of its instructions. These "R"
registers are numbered from 0 through 7 (R0, R1,
R2, R3, R4, R5, R6, and R7). These registers are
generally used to assist in manipulating values
and moving data from one memory location to
another. For example, to add the value of R4 to
the Accumulator, we would execute the following
instruction:

ADD A,R4

However, as the memory map shows, the
"R" Register R4 is really part of Internal RAM.
Specifically, R4 is address 04h. This can be see in
the bright green section of the memory map. Thus

the above instruction accomplishes the same thing
as the following operation:

ADD A,04h

This instruction adds the value found in
Internal RAM address 04h to the value of the
Accumulator, leaving the result in the Accumulator.
Since R4 is really Internal RAM 04h, the above
instruction effectively accomplished the same
thing.

But watch out! As the memory map
shows, the 8051 has four distinct register banks.
When the 8051 is first booted up, register bank 0
(addresses 00h through 07h) is used by default.
However, your program may instruct the 8051 to

4

use one of the alternate register banks; i.e.,
register banks 1, 2, or 3. In this case, R4 will no
longer be the same as Internal RAM address 04h.
For example, if your program instructs the 8051 to
use register bank 3, "R" register R4 will now be
synonomous with Internal RAM address 1Ch.

The concept of register banks adds a
great level of flexibility to the 8051, especially
when dealing with interrupts (we'll talk about

interrupts later). However, always remember that
the register banks really reside in the first 32 bytes
of Internal RAM.

Programming Tip: If you only use the first
register bank (i.e. bank 0), you may use Internal RAM
locations 08h through 1Fh for your own use. But if you
plan to use register banks 1, 2, or 3, be very careful
about using addresses below 20h as you may end up
overwriting the value of your "R" registers!

Bit Memory

The 8051, being a communications-
oriented microcontroller, gives the user the ability
to access a number of bit variables. These
variables may be either 1 or 0.

There are 128 bit variables available to the
user, numberd 00h through 7Fh. The user may
make use of these variables with commands such
as SETB and CLR.

It is important to note that Bit Memory is
really a part of Internal RAM. In fact, the 128 bit
variables occupy the 16 bytes of Internal RAM
from 20h through 2Fh. Thus, if you write the value
FFh to Internal RAM address 20h you’ve
effectively set bits 00h through 07h.

But since the 8051 provides special
instructions to access these 16 bytes of memory
on a bit by bit basis it is useful to think of it as a
separate type of memory. However, always keep
in mind that it is just a subset of Internal RAM--and
that operations performed on Internal RAM can
change the values of the bit variables.

Programming Tip: If your program does not
use bit variables, you may use Internal RAM locations
20h through 2Fh for your own use. But if you plan to use
bit variables, be very careful about using addresses
from 20h through 2Fh as you may end up overwriting
the value of your bits!

Bit variables 00h through 7Fh are for user-
defined functions in their programs. However, bit
variables 80h and above are actually used to
access certain SFRs on a bit-by-bit basis. For
example, if output lines P0.0 through P0.7 are all
clear (0) and you want to turn on the P0.0 output
line you may either execute:

MOV P0,#01h || SETB 80h

Both these instructions accomplish the
same thing. However, using the SETB command
will turn on the P0.0 line without effecting the
status of any of the other P0 output lines. The
MOV command effectively turns off all the other
output lines which, in some cases, may not be
acceptable.

Programming Tip: By default, the 8051
initializes the Stack Pointer (SP) to 08h when the
microcontroller is booted. This means that the stack will
start at address 08h and expand upwards. If you will be
using the alternate register banks (banks 1, 2 or 3) you
must initialize the stack pointer to an address above the
highest register bank you will be using, otherwise the
stack will overwrite your alternate register banks.
Similarly, if you will be using bit variables it is usually a
good idea to initialize the stack pointer to some value
greater than 2Fh to guarantee that your bit variables are
protected from the stack.

Special Function Register (SFR) Memory

Special Function Registers (SFRs) are
areas of memory that control specific functionality
of the 8051 processor. For example, four SFRs
permit access to the 8051’s 32 input/output lines.
Another SFR allows a program to read or write to
the 8051’s serial port. Other SFRs allow the user
to set the serial baud rate, control and access
timers, and configure the 8051’s interrupt system.

When programming, SFRs have the
illusion of being Internal Memory. For example, if
you want to write the value "1" to Internal RAM
location 50 hex you would execute the instruction:

MOV 50h,#01h

Similarly, if you want to write the value "1"
to the 8051’s serial port you would write this value
to the SBUF SFR, which has an SFR address of

99 Hex. Thus, to write the value "1" to the serial
port you would execute the instruction:

MOV 99h,#01h

As you can see, it appears that the SFR is
part of Internal Memory. This is not the case.
When using this method of memory access (it’s
called direct address), any instruction that has an
address of 00h through 7Fh refers to an Internal
RAM memory address; any instruction with an
address of 80h through FFh refers to an SFR
control register.

Programming Tip: SFRs are used to control
the way the 8051 functions. Each SFR has a specific
purpose and format which will be discussed later. Not all
addresses above 80h are assigned to SFRs. However,
this area may NOT be used as additional RAM memory
even if a given address has not been assigned to an
SFR.

5

8051 Tutorial: SFRs

What Are SFRs?

The 8051 is a flexible microcontroller with
a relatively large number of modes of operations.
Your program may inspect and/or change the
operating mode of the 8051 by manipulating the
values of the 8051's Special Function Registers
(SFRs).

SFRs are accessed as if they were normal
Internal RAM. The only difference is that Internal

RAM is from address 00h through 7Fh whereas
SFR registers exist in the address range of 80h
through FFh.

Each SFR has an address (80h through
FFh) and a name. The following chart provides a
graphical presentation of the 8051's SFRs, their
names, and their address.

As you can see, although the address
range of 80h through FFh offer 128 possible
addresses, there are only 21 SFRs in a standard
8051. All other addresses in the SFR range (80h
through FFh) are considered invalid. Writing to or
reading from these registers may produce
undefined values or behavior.

Programming Tip: It is recommended that you
not read or write to SFR addresses that have not been
assigned to an SFR. Doing so may provoke undefined
behavior and may cause your program to be
incompatible with other 8051-derivatives that use the
given SFR for some other purpose.

SFR Types

As mentioned in the chart itself, the SFRs
that have a blue background are SFRs related to
the I/O ports. The 8051 has four I/O ports of 8 bits,
for a total of 32 I/O lines. Whether a given I/O line
is high or low and the value read from the line are
controlled by the SFRs in green.

The SFRs with yellow backgrouns are
SFRs which in some way control the operation or
the configuration of some aspect of the 8051. For
example, TCON controls the timers, SCON
controls the serial port.

The remaining SFRs, with green
backgrounds, are "other SFRs." These SFRs can

be thought of as auxillary SFRs in the sense that
they don't directly configure the 8051 but obviously
the 8051 cannot operate without them. For
example, once the serial port has been configured
using SCON, the program may read or write to the
serial port using the SBUF register.

Programming Tip: The SFRs whose names
appear in red in the chart above are SFRs that may be
accessed via bit operations (i.e., using the SETB and
CLR instructions). The other SFRs cannot be accessed
using bit operations. As you can see, all SFRs that
whose addresses are divisible by 8 can be accessed
with bit operations.

6

SFR Descriptions

This section will endeavor to quickly
overview each of the standard SFRs found in the
above SFR chart map. It is not the intention of this
section to fully explain the functionality of each

SFR--this information will be covered in separate
chapters of the tutorial. This section is to just give
you a general idea of what each SFR does.

P0 (Port 0, Address 80h, Bit-Addressable): This is input/output port 0. Each bit of this SFR
corresponds to one of the pins on the microcontroller. For example, bit 0 of port 0 is pin P0.0, bit 7 is pin
P0.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas
a value of 0 will bring it to a low level.

Programming Tip: While the 8051 has four I/O port (P0, P1, P2, and P3), if your hardware uses external
RAM or external code memory (i.e., your program is stored in an external ROM or EPROM chip or if you are using
external RAM chips) you may not use P0 or P2. This is because the 8051 uses ports P0 and P2 to address the
external memory. Thus if you are using external RAM or code memory you may only use ports P1 and P3 for your
own use.

SP (Stack Pointer, Address 81h): This is the stack pointer of the microcontroller. This SFR
indicates where the next value to be taken from the stack will be read from in Internal RAM. If you push a
value onto the stack, the value will be written to the address of SP + 1. That is to say, if SP holds the
value 07h, a PUSH instruction will push the value onto the stack at address 08h. This SFR is modified by
all instructions which modify the stack, such as PUSH, POP, LCALL, RET, RETI, and whenever interrupts
are provoked by the microcontroller.

Programming Tip: The SP SFR, on startup, is initialized to 07h. This means the stack will start at 08h and
start expanding upward in internal RAM. Since alternate register banks 1, 2, and 3 as well as the user bit variables
occupy internal RAM from addresses 08h through 2Fh, it is necessary to initialize SP in your program to some other
value if you will be using the alternate register banks and/or bit memory. It's not a bad idea to initialize SP to 2Fh as
the first instruction of every one of your programs unless you are 100% sure you will not be using the register banks
and bit variables.

DPL/DPH (Data Pointer Low/High, Addresses 82h/83h): The SFRs DPL and DPH work
together to represent a 16-bit value called the Data Pointer. The data pointer is used in operations
regarding external RAM and some instructions involving code memory. Since it is an unsigned two-byte
integer value, it can represent values from 0000h to FFFFh (0 through 65,535 decimal).

Programming Tip: DPTR is really DPH and DPL taken together as a 16-bit value. In reality, you almost
always have to deal with DPTR one byte at a time. For example, to push DPTR onto the stack you must first push
DPL and then DPH. You can't simply plush DPTR onto the stack. Additionally, there is an instruction to "increment
DPTR." When you execute this instruction, the two bytes are operated upon as a 16-bit value. However, there is no
instruction that decrements DPTR. If you wish to decrement the value of DPTR, you must write your own code to do
so.

PCON (Power Control, Addresses 87h): The Power Control SFR is used to control the 8051's
power control modes. Certain operation modes of the 8051 allow the 8051 to go into a type of "sleep"
mode which requires much less power. These modes of operation are controlled through PCON.
Additionally, one of the bits in PCON is used to double the effective baud rate of the 8051's serial port.

TCON (Timer Control, Addresses 88h, Bit-Addressable): The Timer Control SFR is used to
configure and modify the way in which the 8051's two timers operate. This SFR controls whether each of
the two timers is running or stopped and contains a flag to indicate that each timer has overflowed.
Additionally, some non-timer related bits are located in the TCON SFR. These bits are used to configure
the way in which the external interrupts are activated and also contain the external interrupt flags which
are set when an external interrupt has occured.

TMOD (Timer Mode, Addresses 89h): The Timer Mode SFR is used to configure the mode of
operation of each of the two timers. Using this SFR your program may configure each timer to be a 16-bit
timer, an 8-bit autoreload timer, a 13-bit timer, or two separate timers. Additionally, you may configure the
timers to only count when an external pin is activated or to count "events" that are indicated on an
external pin.

TL0/TH0 (Timer 0 Low/High, Addresses 8Ah/8Bh): These two SFRs, taken together, represent
timer 0. Their exact behavior depends on how the timer is configured in the TMOD SFR; however, these
timers always count up. What is configurable is how and when they increment in value.

7

TL1/TH1 (Timer 1 Low/High, Addresses 8Ch/8Dh): These two SFRs, taken together, represent
timer 1. Their exact behavior depends on how the timer is configured in the TMOD SFR; however, these
timers always count up. What is configurable is how and when they increment in value.

P1 (Port 1, Address 90h, Bit-Addressable): This is input/output port 1. Each bit of this SFR
corresponds to one of the pins on the microcontroller. For example, bit 0 of port 1 is pin P1.0, bit 7 is pin
P1.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas
a value of 0 will bring it to a low level.

SCON (Serial Control, Addresses 98h, Bit-Addressable): The Serial Control SFR is used to
configure the behavior of the 8051's on-board serial port. This SFR controls the baud rate of the serial
port, whether the serial port is activated to receive data, and also contains flags that are set when a byte
is successfully sent or received.

Programming Tip: To use the 8051's on-board serial port, it is generally necessary to initialize the following
SFRs: SCON, TCON, and TMOD. This is because SCON controls the serial port. However, in most cases the
program will wish to use one of the timers to establish the serial port's baud rate. In this case, it is necessary to
configure timer 1 by initializing TCON and TMOD.

SBUF (Serial Control, Addresses 99h): The Serial Buffer SFR is used to send and receive data
via the on-board serial port. Any value written to SBUF will be sent out the serial port's TXD pin. Likewise,
any value which the 8051 receives via the serial port's RXD pin will be delivered to the user program via
SBUF. In other words, SBUF serves as the output port when written to and as an input port when read
from.

P2 (Port 2, Address A0h, Bit-Addressable): This is input/output port 2. Each bit of this SFR
corresponds to one of the pins on the microcontroller. For example, bit 0 of port 2 is pin P2.0, bit 7 is pin
P2.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas
a value of 0 will bring it to a low level.

Programming Tip: While the 8051 has four I/O port (P0, P1, P2, and P3), if your hardware uses external
RAM or external code memory (i.e., your program is stored in an external ROM or EPROM chip or if you are using
external RAM chips) you may not use P0 or P2. This is because the 8051 uses ports P0 and P2 to address the
external memory. Thus if you are using external RAM or code memory you may only use ports P1 and P3 for your
own use.

IE (Interrupt Enable, Addresses A8h): The Interrupt Enable SFR is used to enable and disable
specific interrupts. The low 7 bits of the SFR are used to enable/disable the specific interrupts, where as
the highest bit is used to enable or disable ALL interrupts. Thus, if the high bit of IE is 0 all interrupts are
disabled regardless of whether an individual interrupt is enabled by setting a lower bit.

P3 (Port 3, Address B0h, Bit-Addressable): This is input/output port 3. Each bit of this SFR
corresponds to one of the pins on the microcontroller. For example, bit 0 of port 3 is pin P3.0, bit 7 is pin
P3.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas
a value of 0 will bring it to a low level.

IP (Interrupt Priority, Addresses B8h, Bit-Addressable): The Interrupt Priority SFR is used to
specify the relative priority of each interrupt. On the 8051, an interrupt may either be of low (0) priority or
high (1) priority. An interrupt may only interrupt interrupts of lower priority. For example, if we configure
the 8051 so that all interrupts are of low priority except the serial interrupt, the serial interrupt will always
be able to interrupt the system, even if another interrupt is currently executing. However, if a serial
interrupt is executing no other interrupt will be able to interrupt the serial interrupt routine since the serial
interrupt routine has the highest priority.

PSW (Program Status Word, Addresses D0h, Bit-Addressable): The Program Status Word is
used to store a number of important bits that are set and cleared by 8051 instructions. The PSW SFR
contains the carry flag, the auxiliary carry flag, the overflow flag, and the parity flag. Additionally, the PSW
register contains the register bank select flags which are used to select which of the "R" register banks
are currently selected.

Programming Tip: If you write an interrupt handler routine, it is a very good idea to always save the PSW
SFR on the stack and restore it when your interrupt is complete. Many 8051 instructions modify the bits of PSW. If
your interrupt routine does not guarantee that PSW is the same upon exit as it was upon entry, your program is
bound to behave rather erradically and unpredictably--and it will be tricky to debug since the behavior will tend not to
make any sense.

8

ACC (Accumulator, Addresses E0h, Bit-Addressable): The Accumulator is one of the most-
used SFRs on the 8051 since it is involved in so many instructions. The Accumulator resides as an SFR
at E0h, which means the instruction MOV A,#20h is really the same as MOV E0h,#20h. However, it is a
good idea to use the first method since it only requires two bytes whereas the second option requires
three bytes.

B (B Register, Addresses F0h, Bit-Addressable): The "B" register is used in two instructions:
the multiply and divide operations. The B register is also commonly used by programmers as an auxiliary
register to temporarily store values.

Other SFRs

The chart above is a summary of all the
SFRs that exist in a standard 8051. All derivative
microcontrollers of the 8051 must support these
basic SFRs in order to maintain compatability with
the underlying MSCS51 standard.

A common practice when semiconductor
firms wish to develop a new 8051 derivative is to
add additional SFRs to support new functions that
exist in the new chip.

For example, the Dallas Semiconductor
DS80C320 is upwards compatible with the 8051.
This means that any program that runs on a
standard 8051 should run without modification on
the DS80C320. This means that all the SFRs
defined above also apply to the Dallas component.

However, since the DS80C320 provides
many new features that the standard 8051 does
not, there must be some way to control and
configure these new features. This is
accomplished by adding additional SFRs to those
listed here. For example, since the DS80C320
supports two serial ports (as opposed to just one

on the 8051), the SFRs SBUF2 and SCON2 have
been added. In addition to all the SFRs listed
above, the DS80C320 also recognizes these two
new SFRs as valid and uses their values to
determine the mode of operation of the secondary
serial port. Obviously, these new SFRs have been
assigned to SFR addresses that were unused in
the original 8051. In this manner, new 8051
derivative chips may be developed which will run
existing 8051 programs.

Programming Tip: If you write a program that
utilizes new SFRs that are specific to a given derivative
chip and not included in the above SFR list, your
program will not run properly on a standard 8051 where
that SFR does not exist. Thus, only use non-standard
SFRs if you are sure that your program wil only have to
run on that specific microcontroller. Likewise, if you write
code that uses non-standard SFRs and subsequently
share it with a third-party, be sure to let that party know
that your code is using non-standard SFRs to save them
the headache of realizing that due to strange behavior at
run-time.

9

8051 Tutorial: Basic Registers

The Accumulator

If you’ve worked with any other assembly
languages you will be familiar with the concept of
an Accumulator register.

The Accumulator, as it’s name suggests,
is used as a general register to accumulate the
results of a large number of instructions. It can
hold an 8-bit (1-byte) value and is the most
versatile register the 8051 has due to the shear
number of instructions that make use of the

accumulator. More than half of the 8051’s 255
instructions manipulate or use the accumulator in
some way.

For example, if you want to add the
number 10 and 20, the resulting 30 will be stored
in the Accumulator. Once you have a value in the
Accumulator you may continue processing the
value or you may store it in another register or in
memory.

The "R" registers

The "R" registers are a set of eight
registers that are named R0, R1, etc. up to and
including R7.

These registers are used as auxillary
registers in many operations. To continue with the
above example, perhaps you are adding 10 and
20. The original number 10 may be stored in the
Accumulator whereas the value 20 may be stored
in, say, register R4. To process the addition you
would execute the command:

ADD A,R4

After executing this instruction the
Accumulator will contain the value 30.

You may think of the "R" registers as very
important auxillary, or "helper", registers. The
Accumulator alone would not be very useful if it
were not for these "R" registers.

The "R" registers are also used to
temporarily store values. For example, let’s say
you want to add the values in R1 and R2 together
and then subtract the values of R3 and R4. One
way to do this would be:

MOV A,R3 ;Move the value of R3 into the accumulator
ADD A,R4 ;Add the value of R4
MOV R5,A ;Store the resulting value temporarily in R5
MOV A,R1 ;Move the value of R1 into the accumulator
ADD A,R2 ;Add the value of R2
SUBB A,R5 ;Subtract the value of R5 (which now contains R3 + R4)

As you can see, we used R5 to
temporarily hold the sum of R3 and R4. Of course,
this isn’t the most efficient way to calculate

(R1+R2) - (R3 +R4) but it does illustrate the use of
the "R" registers as a way to store values
temporarily.

The "B" Register

The "B" register is very similar to the
Accumulator in the sense that it may hold an 8-bit
(1-byte) value.

The "B" register is only used by two 8051
instructions: MUL AB and DIV AB. Thus, if you
want to quickly and easily multiply or divide A by

another number, you may store the other number
in "B" and make use of these two instructions.

Aside from the MUL and DIV instructions,
the "B" register is often used as yet another
temporary storage register much like a ninth "R"
register.

The Data Pointer (DPTR)

The Data Pointer (DPTR) is the 8051’s
only user-accessable 16-bit (2-byte) register. The
Accumulator, "R" registers, and "B" register are all
1-byte values.

DPTR, as the name suggests, is used to
point to data. It is used by a number of commands
which allow the 8051 to access external memory.
When the 8051 accesses external memory it will

access external memory at the address indicated
by DPTR.

While DPTR is most often used to point to
data in external memory, many programmers often
take advantge of the fact that it’s the only true 16-
bit register available. It is often used to store 2-
byte values which have nothing to do with memory
locations.

10

The Program Counter (PC)

The Program Counter (PC) is a 2-byte
address which tells the 8051 where the next
instruction to execute is found in memory. When
the 8051 is initialized PC always starts at 0000h
and is incremented each time an instruction is
executed. It is important to note that PC isn’t
always incremented by one. Since some
instructions require 2 or 3 bytes the PC will be
incremented by 2 or 3 in these cases.

The Program Counter is special in that
there is no way to directly modify it’s value. That is
to say, you can’t do something like PC=2430h. On

the other hand, if you execute LJMP 2340h you’ve
effectively accomplished the same thing.

It is also interesting to note that while you
may change the value of PC (by executing a jump
instruction, etc.) there is no way to read the value
of PC. That is to say, there is no way to ask the
8051 "What address are you about to execute?"
As it turns out, this is not completely true: There is
one trick that may be used to determine the
current value of PC. This trick will be covered in a
later chapter.

The Stack Pointer (SP)

The Stack Pointer, like all registers except
DPTR and PC, may hold an 8-bit (1-byte) value.
The Stack Pointer is used to indicate where the
next value to be removed from the stack should be
taken from.

When you push a value onto the stack, the
8051 first increments the value of SP and then
stores the value at the resulting memory location.

When you pop a value off the stack, the
8051 returns the value from the memory location
indicated by SP, and then decrements the value of
SP.

This order of operation is important. When
the 8051 is initialized SP will be initialized to 07h. If

you immediately push a value onto the stack, the
value will be stored in Internal RAM address 08h.
This makes sense taking into account what was
mentioned two paragraphs above: First the 8051
will increment the value of SP (from 07h to 08h)
and then will store the pushed value at that
memory address (08h).

SP is modified directly by the 8051 by six
instructions: PUSH, POP, ACALL, LCALL, RET,
and RETI. It is also used intrinsically whenever an
interrupt is triggered (more on interrupts later.
Don’t worry about them for now!).

11

8051 Tutorial: Addressing Modes

An "addressing mode" refers to how you
are addressing a given memory location. In

summary, the addressing modes are as follows,
with an example of each:

 Immediate Addressing MOV A,#20h
 Direct Addressing MOV A,30h
 Indirect Addressing MOV A,@R0
 External Direct MOVX A,@DPTR
 Code Indirect MOVC A,@A+DPTR

Each of these addressing modes provides important flexibility.

Immediate Addressing

Immediate addressing is so-named
because the value to be stored in memory
immediately follows the operation code in memory.
That is to say, the instruction itself dictates what
value will be stored in memory.

For example, the instruction:

MOV A,#20h

This instruction uses Immediate
Addressing because the Accumulator will be
loaded with the value that immediately follows; in
this case 20 (hexidecimal).

Immediate addressing is very fast since
the value to be loaded is included in the
instruction. However, since the value to be loaded
is fixed at compile-time it is not very flexible.

Direct Addressing

Direct addressing is so-named because
the value to be stored in memory is obtained by
directly retrieving it from another memory location.
For example:

MOV A,30h

This instruction will read the data out of
Internal RAM address 30 (hexidecimal) and store it
in the Accumulator.

Direct addressing is generally fast since,
although the value to be loaded isn’t included in
the instruction, it is quickly accessable since it is
stored in the 8051’s Internal RAM. It is also much
more flexible than Immediate Addressing since the
value to be loaded is whatever is found at the
given address--which may be variable.

Also, it is important to note that when
using direct addressing any instruction which
refers to an address between 00h and 7Fh is
referring to Internal Memory. Any instruction which
refers to an address between 80h and FFh is
referring to the SFR control registers that control
the 8051 microcontroller itself.

The obvious question that may arise is, "If
direct addressing an address from 80h through
FFh refers to SFRs, how can I access the upper
128 bytes of Internal RAM that are available on the
8052?" The answer is: You can’t access them
using direct addressing. As stated, if you directly
refer to an address of 80h through FFh you will be
referring to an SFR. However, you may access the
8052’s upper 128 bytes of RAM by using the next
addressing mode, "indirect addressing."

Indirect Addressing

Indirect addressing is a very powerful
addressing mode which in many cases provides
an exceptional level of flexibility. Indirect
addressing is also the only way to access the extra
128 bytes of Internal RAM found on an 8052.

Indirect addressing appears as follows:

MOV A,@R0

This instruction causes the 8051 to
analyze the value of the R0 register. The 8051 will
then load the accumulator with the value from

Internal RAM which is found at the address
indicated by R0.

For example, let’s say R0 holds the value
40h and Internal RAM address 40h holds the value
67h. When the above instruction is executed the
8051 will check the value of R0. Since R0 holds
40h the 8051 will get the value out of Internal RAM
address 40h (which holds 67h) and store it in the
Accumulator. Thus, the Accumulator ends up
holding 67h.

Indirect addressing always refers to
Internal RAM; it never refers to an SFR. Thus, in a
prior example we mentioned that SFR 99h can be

12

used to write a value to the serial port. Thus one
may think that the following would be a valid

solution to write the value ‘1’ to the serial port:

MOV R0,#99h ;Load the address of the serial port
MOV @R0,#01h ;Send 01 to the serial port -- WRONG!!

This is not valid. Since indirect addressing
always refers to Internal RAM these two
instructions would write the value 01h to Internal
RAM address 99h on an 8052. On an 8051 these

two instructions would produce an undefined result
since the 8051 only has 128 bytes of Internal
RAM.

External Direct

External Memory is accessed using a
suite of instructions which use what I call "External
Direct" addressing. I call it this because it appears
to be direct addressing, but it is used to access
external memory rather than internal memory.

There are only two commands that use
External Direct addressing mode:

MOVX A,@DPTR
MOVX @DPTR,A

As you can see, both commands utilize
DPTR. In these instructions, DPTR must first be
loaded with the address of external memory that
you wish to read or write. Once DPTR holds the
correct external memory address, the first
command will move the contents of that external
memory address into the Accumulator. The
second command will do the opposite: it will allow
you to write the value of the Accumulator to the
external memory address pointed to by DPTR.

External Indirect

External memory can also be accessed
using a form of indirect addressing which I call
External Indirect addressing. This form of
addressing is usually only used in relatively small
projects that have a very small amount of external
RAM. An example of this addressing mode is:

MOVX @R0,A

Once again, the value of R0 is first read
and the value of the Accumulator is written to that

address in External RAM. Since the value of @R0
can only be 00h through FFh the project would
effectively be limited to 256 bytes of External
RAM. There are relatively simple
hardware/software tricks that can be implemented
to access more than 256 bytes of memory using
External Indirect addressing; however, it is usually
easier to use External Direct addressing if your
project has more than 256 bytes of External RAM.

13

8051 Tutorial: Program Flow

When an 8051 is first initialized, it resets
the PC to 0000h. The 8051 then begins to execute
instructions sequentially in memory unless a
program instruction causes the PC to be otherwise
altered. There are various instructions that can

modify the value of the PC; specifically, conditional
branching instructions, direct jumps and calls, and
"returns" from subroutines. Additionally, interrupts,
when enabled, can cause the program flow to
deviate from it’s otherwise sequential scheme.

Conditional Branching

The 8051 contains a suite of instructions
which, as a group, are referred to as "conditional
branching" instructions. These instructions cause
program execution to follow a non-sequential path
if a certain condition is true.

Take, for example, the JB instruction. This
instruction means "Jump if Bit Set." An example of
the JB instruction might be:

JB 45h,HELLO
NOP

HELLO:

In this case, the 8051 will analyze the
contents of bit 45h. If the bit is set program
execution will jump immediately to the label
HELLO, skipping the NOP instruction. If the bit is
not set the conditional branch fails and program

execution continues, as usual, with the NOP
instruction which follows.

Conditional branching is really the
fundamental building block of program logic since
all "decisions" are accomplished by using
conditional branching. Conditional branching can
be thought of as the "IF...THEN" structure in 8051
assembly language.

An important note worth mentioning about
conditional branching is that the program may only
branch to instructions located withim 128 bytes
prior to or 127 bytes following the address which
follows the conditional branch instruction. This
means that in the above example the label HELLO
must be within +/- 128 bytes of the memory
address which contains the conditional branching
instruction.

Direct Jumps

While conditional branching is extremely
important, it is often necessary to make a direct
call to a given memory location without basing it
on a given logical decision. This is equivalent to
saying "Goto" in BASIC. In this case you want the
program flow to continue at a given memory
address without considering any conditions.

This is accomplished in the 8051 using
"Direct Jump and Call" instructions. As illustrated
in the last paragraph, this suite of instructions
causes program flow to change unconditionally.

Consider the example:

LJMP NEW_ADDRESS
.
.
.

NEW_ADDRESS:

The LJMP instruction in this example
means "Long Jump." When the 8051 executes this
instruction the PC is loaded with the address of
NEW_ADDRESS and program execution
continues sequentially from there.

The obvious difference between the Direct
Jump and Call instructions and the conditional
branching is that with Direct Jumps and Calls
program flow always changes. With conditional
branching program flow only changes if a certain
condition is true.

It is worth mentioning that, aside from
LJMP, there are two other instructions which
cause a direct jump to occur: the SJMP and AJMP
commands. Functionally, these two commands
perform the exact same function as the LJMP
command--that is to say, they always cause
program flow to continue at the address indicated
by the command. However, SJMP and AJMP differ
in the following ways:

• The SJMP command, like the conditional
branching instructions, can only jump to an
address within +/- 128 bytes of the SJMP
command.

• The AJMP command can only jump to an
address that is in the same 2k block of
memory as the AJMP command. That is to
say, if the AJMP command is at code memory
location 650h, it can only do a jump to
addresses 0000h through 07FFh (0 through
2047, decimal).

You may be asking yourself, "Why would I
want to use the SJMP or AJMP command which
have restrictions as to how far they can jump if
they do the same thing as the LJMP command
which can jump anywhere in memory?" The
answer is simple: The LJMP command requires
three bytes of code memory whereas both the
SJMP and AJMP commands require only two.

14

Thus, if you are developing an application that has
memory restrictions you can often save quite a bit
of memory using the 2-byte AJMP/SJMP
instructions instead of the 3-byte instruction.

Recently, I wrote a program that required
2100 bytes of memory but I had a memory
restriction of 2k (2048 bytes). I did a
search/replace changing all LJMPs to AJMPs and
the program shrunk downto 1950 bytes. Thus,
without changing any logic whatsoever in my

program I saved 150 bytes and was able to meet
my 2048 byte memory restriction.

NOTE: Some quality assemblers will actually
do the above conversion for you automatically. That is,
they’ll automatically change your LJMPs to SJMPs
whenever possible. This is a nifty and very powerful
capability that you may want to look for in an assembler
if you plan to develop many projects that have relatively
tight memory restrictions.

Direct Calls

Another operation that will be familiar to
seasoned programmers is the LCALL instruction.
This is similar to a "Gosub" command in Basic.

When the 8051 executes an LCALL
instruction it immediately pushes the current

Program Counter onto the stack and then
continues executing code at the address indicated
by the LCALL instruction.

Returns from Routines

Another structure that can cause program
flow to change is the "Return from Subroutine"
instruction, known as RET in 8051 Assembly
Language.

The RET instruction, when executed,
returns to the address following the instruction that
called the given subroutine. More accurately, it
returns to the address that is stored on the stack.

The RET command is direct in the sense
that it always changes program flow without
basing it on a condition, but is variable in the
sense that where program flow continues can be
different each time the RET instruction is executed
depending on from where the subroutine was
called originally.

Interrupts

An interrupt is a special feature which
allows the 8051 to provide the illusion of "multi-
tasking," although in reality the 8051 is only doing
one thing at a time. The word "interrupt" can often
be subsituted with the word "event."

An interrupt is triggered whenever a
corresponding event occurs. When the event
occurs, the 8051 temporarily puts "on hold" the
normal execution of the program and executes a
special section of code referred to as an interrupt

handler. The interrupt handler performs whatever
special functions are required to handle the event
and then returns control to the 8051 at which point
program execution continues as if it had never
been interrupted.

The topic of interrupts is somewhat tricky
and very important. For that reason, an entire
chapter will be dedicated to the topic. For now,
suffice it to say that Interrupts can cause program
flow to change.

15

8051 Tutorial: Instruction Set, Timing, and Low-Level Info

In order to understand--and better make
use of--the 8051, it is necessary to understand
some underlying information concerning timing.

The 8051 operates based on an external
crystal. This is an electrical device which, when
energy is applied, emits pulses at a fixed
frequency. One can find crystals of virtually any
frequency depending on the application
requirements. When using an 8051, the most
common crystal frequencies are 12 megahertz and
11.059 megahertz--with 11.059 being much more
common. Why would anyone pick such an odd-ball
frequency? There’s a real reason for it--it has to do
with generating baud rates and we’ll talk more
about it in the Serial Communication chapter. For
the remainder of this discussion we’ll assume that
we’re using an 11.059Mhz crystal.

Microcontrollers (and many other electrical
systems) use crystals to syncrhronize operations.
The 8051 uses the crystal for precisely that: to
synchronize it’s operation. Effectively, the 8051
operates using what are called "machine cycles."
A single machine cycle is the minimum amount of
time in which a single 8051 instruction can be
executed. although many instructions take multiple
cycles.

A cycle is, in reality, 12 pulses of the
crystal. That is to say, if an instruction takes one
machine cycle to execute, it will take 12 pulses of
the crystal to execute. Since we know the crystal is
pulsing 11,059,000 times per second and that one
machine cycle is 12 pulses, we can calculate how
many instruction cycles the 8051 can execute per
second:

11,059,000 / 12 = 921,583

This means that the 8051 can execute
921,583 single-cycle instructions per second.
Since a large number of 8051 instructions are
single-cycle instructions it is often considered that
the 8051 can execute roughly 1 million instructions
per second, although in reality it is less--and,
depending on the instructions being used, an
estimate of about 600,000 instructions per second
is more realistic.

For example, if you are using exclusively
2-cycle instructions you would find that the 8051
would execute 460,791 instructions per second.
The 8051 also has two really slow instructions that
require a full 4 cycles to execute--if you were to
execute nothing but those instructions you’d find
performance to be about 230,395 instructions per
second.

It is again important to emphasize that not
all instructions execute in the same amount of
time. The fastest instructions require one machine
cycle (12 crystal pulses), many others require two
machine cycles (24 crystal pulses), and the two
very slow math operations require four machine
cycles (48 crystal pulses).

NOTE: Many 8051 derivative chips change
instruction timing. For example, many optimized
versions of the 8051 execute instructions in 4 oscillator
cycles instead of 12; such a chip would be effectively 3
times faster than the 8051 when used with the same
11.059 Mhz crystal.

Since all the instructions require different
amounts of time to execute a very obvious
question comes to mind: How can one keep track
of time in a time-critical application if we have no
reference to time in the outside world?

Luckily, the 8051 includes timers which
allow us to time events with high precision--which
is the topic of the next chapter.

16

8051 Tutorial: Timers

The 8051 comes equipped with two
timers, both of which may be controlled, set, read,
and configured individually. The 8051 timers have
three general functions:
1) Keeping time and/or calculating the amount of

time between events,
2) Counting the events themselves, or

3) Generating baud rates for the serial port.

The three timer uses are distinct so we will
talk about each of them separately. The first two
uses will be discussed in this chapter while the use
of timers for baud rate generation will be
discussed in the chapter relating to serial ports.

How does a timer count?

How does a timer count? The answer to
this question is very simple: A timer always counts
up. It doesn’t matter whether the timer is being
used as a timer, a counter, or a baud rate
generator: A timer is always incremented by the
microcontroller.

Programming Tip: Some derivative chips
actually allow the program to configure whether the
timers count up or down. However, since this option only
exists on some derivatives it is beyond the scope of this
tutorial which is aimed at the standard 8051. It is only
mentioned here in the event that you absolutely need a
timer to count backwards, you will know that you may be
able to find an 8051-compatible microcontroller that
does it.

USING TIMERS TO MEASURE TIME

Obviously, one of the primary uses of
timers is to measure time. We will discuss this use
of timers first and will subsequently discuss the
use of timers to count events. When a timer is
used to measure time it is also called an "interval
timer" since it is measuring the time of the interval
between two events.

How long does a timer take to count?
First, it’s worth mentioning that when a

timer is in interval timer mode (as opposed to
event counter mode) and correctly configured, it
will increment by 1 every machine cycle. As you
will recall from the previous chapter, a single
machine cycle consists of 12 crystal pulses. Thus
a running timer will be incremented:

11,059,000 / 12 = 921,583

921,583 times per second. Unlike
instructions--some of which require 1 machine
cycle, others 2, and others 4--the timers are
consistent: They will always be incremented once
per machine cycle. Thus if a timer has counted
from 0 to 50,000 you may calculate:

50,000 / 921,583 = .0542

.0542 seconds have passed. In plain
English, about half of a tenth of a second, or one-
twentieth of a second.

Obviously it’s not very useful to know
.0542 seconds have passed. If you want to
execute an event once per second you’d have to
wait for the timer to count from 0 to 50,000 18.45

times. How can you wait "half of a time?" You
can’t. So we come to another important
calculation.

Let’s say we want to know how many
times the timer will be incremented in .05 seconds.
We can do simple multiplication: .05 * 921,583 =
46,079.15.

This tells us that it will take .05 seconds
(1/20th of a second) to count from 0 to 46,079.
Actually, it will take it .049999837 seconds--so
we’re off by .000000163 seconds--however, that’s
close enough for government work. Consider that
if you were building a watch based on the 8051
and made the above assumption your watch would
only gain about one second every 2 months.
Again, I think that’s accurate enough for most
applications--I wish my watch only gained one
second every two months!

Obviously, this is a little more useful. If you
know it takes 1/20th of a second to count from 0 to
46,079 and you want to execute some event every
second you simply wait for the timer to count from
0 to 46,079 twenty times; then you execute your
event, reset the timers, and wait for the timer to
count up another 20 times. In this manner you will
effectively execute your event once per second,
accurate to within thousandths of a second.

Thus, we now have a system with which to
measure time. All we need to review is how to
control the timers and initialize them to provide us
with the information we need.

17

Timer SFRs

As mentioned before, the 8051 has two
timers which each function essentially the same
way. One timer is TIMER0 and the other is
TIMER1. The two timers share two SFRs (TMOD
and TCON) which control the timers, and each
timer also has two SFRs dedicated solely to itself
(TH0/TL0 and TH1/TL1).

We’ve given SFRs names to make it
easier to refer to them, but in reality an SFR has a
numeric address. It is often useful to know the
numeric address that corresponds to an SFR
name. The SFRs relating to timers are:

SFR Name Description SFR Address
TH0 Timer 0 High Byte 8Ch
TL0 Timer 0 Low Byte 8Ah
TH1 Timer 1 High Byte 8Dh
TL1 Timer 1 Low Byte 8Bh

TCON Timer Control 88h
TMOD Timer Mode 89h

When you enter the name of an SFR into
an assembler, it internally converts it to a number.
For example, the command:

MOV TH0,#25h

moves the value 25h into the TH0 SFR.
However, since TH0 is the same as SFR address
8Ch this command is equivalent to:

MOV 8Ch,#25h

Now, back to the timers. Timer 0 has two
SFRs dedicated exclusively to itself: TH0 and TL0.
Without making things too complicated to start off
with, you may just think of this as the high and low
byte of the timer. That is to say, when Timer 0 has
a value of 0, both TH0 and TL0 will contain 0.

When Timer 0 has the value 1000, TH0 will hold
the high byte of the value (3 decimal) and TL0 will
contain the low byte of the value (232 decimal).
Reviewing low/high byte notation, recall that you
must multiply the high byte by 256 and add the low
byte to calculate the final value. That is to say:

TH0 * 256 + TL0 = 1000
3 * 256 + 232 = 1000

Timer 1 works the exact same way, but it’s
SFRs are TH1 and TL1.

Since there are only two bytes devoted to
the value of each timer it is apparent that the
maximum value a timer may have is 65,535. If a
timer contains the value 65,535 and is
subsequently incremented, it will reset--or
overflow--back to 0.

The TMOD SFR

Let’s first talk about our first control SFR:
TMOD (Timer Mode). The TMOD SFR is used to
control the mode of operation of both timers. Each
bit of the SFR gives the microcontroller specific
information concerning how to run a timer. The

high four bits (bits 4 through 7) relate to Timer 1
whereas the low four bits (bits 0 through 3)
perform the exact same functions, but for timer 0.

The individual bits of TMOD have the
following functions:

Bit Name Explanation of Function Timer

7 GATE1 When this bit is set the timer will only run when INT1 (P3.3) is high. When this bit is
clear the timer will run regardless of the state of INT1. 1

6 C/T1 When this bit is set the timer will count events on T1 (P3.5). When this bit is clear
the timer will be incremented every machine cycle.

1

5 T1M1 Timer mode bit (see below) 1

4 T1M0 Timer mode bit (see below) 1

3 GATE0 When this bit is set the timer will only run when INT0 (P3.2) is high. When this bit is
clear the timer will run regardless of the state of INT0.

0

2 C/T0 When this bit is set the timer will count events on T0 (P3.4). When this bit is clear
the timer will be incremented every machine cycle. 0

1 T0M1 Timer mode bit (see below) 0

0 T0M0 Timer mode bit (see below) 0

18

As you can see in the above chart, four
bits (two for each timer) are used to specify a

mode of operation. The modes of operation are:

TxM1 TxM0 Timer Mode Description of Mode
0 0 0 13-bit Timer.
0 1 1 16-bit Timer
1 0 2 8-bit auto-reload
1 1 3 Split timer mode

13-bit Time Mode (mode 0)

Timer mode "0" is a 13-bit timer. This is a
relic that was kept around in the 8051 to maintain
compatability with it’s predecesor, the 8048.
Generally the 13-bit timer mode is not used in new
development.

When the timer is in 13-bit mode, TLx will
count from 0 to 31. When TLx is incremented from
31, it will "reset" to 0 and increment THx. Thus,
effectively, only 13 bits of the two timer bytes are
being used: bits 0-4 of TLx and bits 0-7 of THx.

This also means, in essence, the timer can only
contain 8192 values. If you set a 13-bit timer to 0,
it will overflow back to zero 8192 machine cycles
later.

Again, there is very little reason to use this
mode and it is only mentioned so you won’t be
surprised if you ever end up analyzing archaeic
code which has been passed down through the
generations (a generation in a programming shop
is often on the order of about 3 or 4 months).

16-bit Time Mode (mode 1)

Timer mode "1" is a 16-bit timer. This is a
very commonly used mode. It functions just like
13-bit mode except that all 16 bits are used. TLx
is incremented from 0 to 255. When TLx is
incremented from 255, it resets to 0 and causes

THx to be incremented by 1. Since this is a full 16-
bit timer, the timer may contain up to 65536
distinct values. If you set a 16-bit timer to 0, it will
overflow back to 0 after 65,536 machine cycles.

8-bit Time Mode (mode 2)

Timer mode "2" is an 8-bit auto-reload
mode. What is that, you may ask? Simple. When a
timer is in mode 2, THx holds the "reload value"
and TLx is the timer itself. Thus, TLx starts
counting up. When TLx reaches 255 and is
subsequently incremented, instead of resetting to

0 (as in the case of modes 0 and 1), it will be reset
to the value stored in THx.

For example, let’s say TH0 holds the value
FDh and TL0 holds the value FEh. If we were to
watch the values of TH0 and TL0 for a few
machine cycles this is what we’d see:

Machine Cycle TH0 Value TL0 Value
1 FDh FEh
2 FDh FFh
3 FDh FDh
4 FDh FEh
5 FDh FFh
6 FDh FDh
7 FDh FEh

As you can see, the value of TH0 never
changed. In fact, when you use mode 2 you
almost always set THx to a known value and TLx
is the SFR that is constantly incremented.

What’s the benefit of auto-reload mode?
Perhaps you want the timer to always have a
value from 200 to 255. If you use mode 0 or 1,
you’d have to check in code to see if the timer had
overflowed and, if so, reset the timer to 200. This
takes precious instructions of execution time to

check the value and/or to reload it. When you use
mode 2 the microcontroller takes care of this for
you. Once you’ve configured a timer in mode 2
you don’t have to worry about checking to see if
the timer has overflowed nor do you have to worry
about resetting the value--the microcontroller
hardware will do it all for you.

The auto-reload mode is very commonly
used for establishing a baud rate which we will talk
more about in the Serial Communications chapter.

19

Split Timer Mode (mode 3)

Timer mode "3" is a split-timer mode.
When Timer 0 is placed in mode 3, it essentially
becomes two separate 8-bit timers. That is to say,
Timer 0 is TL0 and Timer 1 is TH0. Both timers
count from 0 to 255 and overflow back to 0. All the
bits that are related to Timer 1 will now be tied to
TH0.

While Timer 0 is in split mode, the real
Timer 1 (i.e. TH1 and TL1) can be put into modes
0, 1 or 2 normally--however, you may not start or

stop the real timer 1 since the bits that do that are
now linked to TH0. The real timer 1, in this case,
will be incremented every machine cycle no matter
what.

The only real use I can see of using split
timer mode is if you need to have two separate
timers and, additionally, a baud rate generator. In
such case you can use the real Timer 1 as a baud
rate generator and use TH0/TL0 as two separate
timers.

The TCON SFR

Finally, there’s one more SFR that
controls the two timers and provides valuable

information about them. The TCON SFR has the
following structure:

Bit Name Bit Addres Explanation of Function Timer

7 TF1 8Fh
 Timer 1 Overflow. This bit is set by the microcontroller when Timer 1
overflows. 1

6 TR1 8Eh
 Timer 1 Run. When this bit is set Timer 1 is turned on. When this bit is
clear Timer 1 is off. 1

5 TF0 8Dh
 Timer 0 Overflow. This bit is set by the microcontroller when Timer 0
overflows. 0

4 TR0 8Ch
 Timer 0 Run. When this bit is set Timer 0 is turned on. When this bit is
clear Timer 0 is off. 0

As you may notice, we’ve only defined 4 of
the 8 bits. That’s because the other 4 bits of the
SFR don’t have anything to do with timers--they
have to do with Interrupts and they will be
discussed in the chapter that addresses interrupts.

A new piece of information in this chart is
the column "bit address." This is because this SFR
is "bit-addressable." What does this mean? It
means if you want to set the bit TF1--which is the
highest bit of TCON--you could execute the
command:

MOV TCON, #80h

or, since the SFR is bit-addressable, you
could just execute the command:

SETB TF1

This has the benefit of setting the high bit
of TCON without changing the value of any of the
other bits of the SFR. Usually when you start or
stop a timer you don’t want to modify the other
values in TCON, so you take advantage of the fact
that the SFR is bit-addressable.

Initializing a Timer

Now that we’ve discussed the timer-
related SFRs we are ready to write code that will
initialize the timer and start it running.

As you’ll recall, we first must decide what
mode we want the timer to be in. In this case we
want a 16-bit timer that runs continuously; that is
to say, it is not dependent on any external pins.

We must first initialize the TMOD SFR.
Since we are working with timer 0 we will be using
the lowest 4 bits of TMOD. The first two bits,
GATE0 and C/T0 are both 0 since we want the
timer to be independent of the external pins. 16-bit
mode is timer mode 1 so we must clear T0M1 and
set T0M0. Effectively, the only bit we want to turn

on is bit 0 of TMOD. Thus to initialize the timer we
execute the instruction:

MOV TMOD,#01h

Timer 0 is now in 16-bit timer mode.
However, the timer is not running. To start the
timer running we must set the TR0 bit We can do
that by executing the instruction:

SETB TR0

Upon executing these two instructions
timer 0 will immediately begin counting, being
incremented once every machine cycle (every 12
crystal pulses).

20

Reading the Timer

There are two common ways of reading
the value of a 16-bit timer; which you use depends
on your specific application. You may either read

the actual value of the timer as a 16-bit number, or
you may simply detect when the timer has
overflowed.

Reading the value of a Timer

If your timer is in an 8-bit mode--that is,
either 8-bit AutoReload mode or in split timer
mode--then reading the value of the timer is
simple. You simply read the 1-byte value of the
timer and you’re done.

However, if you’re dealing with a 13-bit or
16-bit timer the chore is a little more complicated.
Consider what would happen if you read the low
byte of the timer as 255, then read the high byte of
the timer as 15. In this case, what actually
happened was that the timer value was 14/255
(high byte 14, low byte 255) but you read 15/255.
Why? Because you read the low byte as 255. But
when you executed the next instruction a small
amount of time passed--but enough for the timer to
increment again at which time the value rolled over
from 14/255 to 15/0. But in the process you’ve
read the timer as being 15/255. Obviously there’s
a problem there.

The solution? It’s not too tricky, really. You
read the high byte of the timer, then read the low
byte, then read the high byte again. If the high byte
read the second time is not the same as the high
byte read the first time you repeat the cycle. In
code, this would appear as:

REPEAT: MOV A,TH0
MOV R0,TL0
CJNE A,TH0,REPEAT

In this case, we load the accumulator with
the high byte of Timer 0. We then load R0 with the
low byte of Timer 0. Finally, we check to see if the
high byte we read out of Timer 0--which is now
stored in the Accumulator--is the same as the
current Timer 0 high byte. If it isn’t it means we’ve
just "rolled over" and must reread the timer’s
value--which we do by going back to REPEAT.
When the loop exits we will have the low byte of
the timer in R0 and the high byte in the
Accumulator.

Another much simpler alternative is to
simply turn off the timer run bit (i.e. CLR TR0),
read the timer value, and then turn on the timer
run bit (i.e. SETB TR0). In that case, the timer isn’t
running so no special tricks are necessary. Of
course, this implies that your timer will be stopped
for a few machine cycles. Whether or not this is
tolerable depends on your specific application.

Detecting Timer Overflow

Often it is necessary to just know that the
timer has reset to 0. That is to say, you are not
particularly interest in the value of the timer but
rather you are interested in knowing when the
timer has overflowed back to 0.

Whenever a timer overflows from it’s
highest value back to 0, the microcontroller
automatically sets the TFx bit in the TCON
register. This is useful since rather than checking
the exact value of the timer you can just check if
the TFx bit is set. If TF0 is set it means that timer 0
has overflowed; if TF1 is set it means that timer 1
has overflowed.

We can use this approach to cause the
program to execute a fixed delay. As you’ll recall,
we calculated earlier that it takes the 8051 1/20th
of a second to count from 0 to 46,079. However,
the TFx flag is set when the timer overflows back
to 0. Thus, if we want to use the TFx flag to
indicate when 1/20th of a second has passed we
must set the timer initially to 65536 less 46079, or
19,457. If we set the timer to 19,457, 1/20th of a
second later the timer will overflow. Thus we come
up with the following code to execute a pause of
1/20th of a second:

MOV TH0,#76 ;High byte of 19,457 (76 * 256 = 19,456)
MOV TL0,#01 ;Low byte of 19,457 (19,456 + 1 = 19,457)
MOV TMOD,#01 ;Put Timer 0 in 16-bit mode
SETB TR0 ;Make Timer 0 start counting
JNB TF0,$;If TF0 is not set, jump back to this same instruction

In the above code the first two lines
initialize the Timer 0 starting value to 19,457. The
next two instructions configure timer 0 and turn it
on. Finally, the last instruction JNB TF0,$, reads
"Jump, if TF0 is not set, back to this same
instruction." The "$" operand means, in most

assemblers, the address of the current instruction.
Thus as long as the timer has not overflowed and
the TF0 bit has not been set the program will keep
executing this same instruction. After 1/20th of a
second timer 0 will overflow, set the TF0 bit, and
program execution will then break out of the loop.

21

Timing the length of events

The 8051 provides another cool toy that
can be used to time the length of events.

For example, let's say we're trying to save
electricity in the office and we're interested in how
long a light is turned on each day. When the light
is turned on, we want to measure time. When the
light is turned off we don't. One option would be to
connect the lightswitch to one of the pins,
constantly read the pin, and turn the timer on or off
based on the state of that pin. While this would
work fine, the 8051 provides us with an easier
method of accomplishing this.

Looking again at the TMOD SFR, there is
a bit called GATE0. So far we've always cleared

this bit because we wanted the timer to run
regardless of the state of the external pins.
However, now it would be nice if an external pin
could control whether the timer was running or not.
It can. All we need to do is connect the lightswitch
to pin INT0 (P3.2) on the 8051 and set the bit
GATE0. When GATE0 is set Timer 0 will only run
if P3.2 is high. When P3.2 is low (i.e., the
lightswitch is off) the timer will automatically be
stopped.

Thus, with no control code whatsoever,
the external pin P3.2 can control whether or not
our timer is running or not.

USING TIMERS AS EVENT COUNTERS

We've discussed how a timer can be used
for the obvious purpose of keeping track of time.
However, the 8051 also allows us to use the
timers to count events.

How can this be useful? Let's say you had
a sensor placed across a road that would send a
pulse every time a car passed over it. This could
be used to determine the volume of traffic on the

road. We could attach this sensor to one of the
8051's I/O lines and constantly monitor it,
detecting when it pulsed high and then
incrementing our counter when it went back to a
low state. This is not terribly difficult, but requires
some code. Let's say we hooked the sensor to
P1.0; the code to count cars passing would look
something like this:

JNB P1.0,$;If a car hasn't raised the signal, keep waiting
JB P1.0,$;The line is high which means the car is on the sensor right now
INC COUNTER ;The car has passed completely, so we count it

As you can see, it's only three lines of
code. But what if you need to be doing other
processing at the same time? You can't be stuck
in the JNB P1.0,$ loop waiting for a car to pass if
you need to be doing other things. Of course,
there are ways to get around even this limitation
but the code quickly becomes big, complex, and
ugly.

Luckily, since the 8051 provides us with a
way to use the timers to count events we don't
have to bother with it. It is actually painfully easy.
We only have to configure one additional bit.

Let's say we want to use Timer 0 to count
the number of cars that pass. If you look back to
the bit table for the TCON SFR you will there is a
bit called "C/T0"--it's bit 2 (TCON.2). Reviewing
the explanation of the bit we see that if the bit is
clear then timer 0 will be incremented every
machine cycle. This is what we've already used to
measure time. However, if we set C/T0 timer 0 will
monitor the P3.4 line. Instead of being
incremented every machine cycle, timer 0 will
count events on the P3.4 line. So in our case we
simply connect our sensor to P3.4 and let the 8051
do the work. Then, when we want to know how
many cars have passed, we just read the value of

timer 0--the value of timer 0 will be the number of
cars that have passed.

So what exactly is an event? What does
timer 0 actually "count?" Speaking at the electrical
level, the 8051 counts 1-0 transitions on the P3.4
line. This means that when a car first runs over our
sensor it will raise the input to a high ("1")
condition. At that point the 8051 will not count
anything since this is a 0-1 transition. However,
when the car has passed the sensor will fall back
to a low ("0") state. This is a 1-0 transition and at
that instant the counter will be incremented by 1.

It is important to note that the 8051 checks
the P3.4 line each instruction cycle (12 clock
cycles). This means that if P3.4 is low, goes high,
and goes back low in 6 clock cycles it will probably
not be detected by the 8051. This also means the
8051 event counter is only capable of counting
events that occur at a maximum of 1/24th the rate
of the crystal frequency. That is to say, if the
crystal frequency is 12.000 Mhz it can count a
maximum of 500,000 events per second (12.000
Mhz * 1/24 = 500,000). If the event being counted
occurs more than 500,000 times per second it will
not be able to be accurately counted by the 8051.

22

8051 Tutorial: Serial Communication

One of the 8051’s many powerful features
is it’s integrated UART, otherwise known as a
serial port. The fact that the 8051 has an
integrated serial port means that you may very
easily read and write values to the serial port. If it
were not for the integrated serial port, writing a
byte to a serial line would be a rather tedious
process requring turning on and off one of the I/O
lines in rapid succession to properly "clock out"
each individual bit, including start bits, stop bits,
and parity bits.

However, we do not have to do this.
Instead, we simply need to configure the serial
port’s operation mode and baud rate. Once
configured, all we have to do is write to an SFR to
write a value to the serial port or read the same
SFR to read a value from the serial port. The 8051
will automatically let us know when it has finished
sending the character we wrote and will also let us
know whenever it has received a byte so that we
can process it. We do not have to worry about
transmission at the bit level--which saves us quite
a bit of coding and processing time.

Setting the Serial Port Mode

The first thing we must do when using the
8051’s integrated serial port is, obviously,
configure it. This lets us tell the 8051 how many
data bits we want, the baud rate we will be using,
and how the baud rate will be determined.

First, let’s present the "Serial Control"
(SCON) SFR and define what each bit of the SFR
represents:

Bit Name Bit Addres Explanation of Function

7 SM0 9Fh Serial port mode bit 0

6 SM1 9Eh Serial port mode bit 1.

5 SM2 9Dh Mutliprocessor Communications Enable (explained later)

4 REN 9Ch Receiver Enable. This bit must be set in order to receive
characters.

3 TB8 9Bh Transmit bit 8. The 9th bit to transmit in mode 2 and 3.

2 RB8 9Ah Receive bit 8. The 9th bit received in mode 2 and 3.

1 TI 99h Transmit Flag. Set when a byte has been completely
transmitted.

0 RI 98h Receive Flag. Set when a byte has been completely
received.

Additionally, it is necessary to define the function of SM0 and SM1 by an additional table:

SM0 SM1 Serial Mode Explanation Baud Rate
0 0 0 8-bit Shift Register Oscillator / 12
0 1 1 8-bit UART Set by Timer 1 (*)
1 0 2 9-bit UART Oscillator / 32 (*)
1 1 3 9-bit UART Set by Timer 1 (*)

Note: The baud rate indicated in this table is
doubled if PCON.7 (SMOD) is set.

The SCON SFR allows us to configure the
Serial Port. Thus, we’ll go through each bit and
review it’s function. The first four bits (bits 4
through 7) are configuration bits.

Bits SM0 and SM1 let us set the serial
mode to a value between 0 and 3, inclusive. The
four modes are defined in the chart immediately
above. As you can see, selecting the Serial Mode
selects the mode of operation (8-bit/9-bit, UART or
Shift Register) and also determines how the baud

rate will be calculated. In modes 0 and 2 the baud
rate is fixed based on the oscillator’s frequency. In
modes 1 and 3 the baud rate is variable based on
how often Timer 1 overflows. We’ll talk more about
the various Serial Modes in a moment.

The next bit, SM2, is a flag for
"Multiprocessor communication." Generally,
whenever a byte has been received the 8051 will
set the "RI" (Receive Interrupt) flag. This lets the
program know that a byte has been received and
that it needs to be processed. However, when
SM2 is set the "RI" flag will only be triggered if the

23

9th bit received was a "1". That is to say, if SM2 is
set and a byte is received whose 9th bit is clear,
the RI flag will never be set. This can be useful in
certain advanced serial applications. For now it is
safe to say that you will almost always want to
clear this bit so that the flag is set upon reception
of any character.

The next bit, REN, is "Receiver Enable."
This bit is very straightforward: If you want to
receive data via the serial port, set this bit. You will
almost always want to set this bit.

The last four bits (bits 0 through 3) are
operational bits. They are used when actually
sending and receiving data--they are not used to
configure the serial port.

The TB8 bit is used in modes 2 and 3. In
modes 2 and 3, a total of nine data bits are
transmitted. The first 8 data bits are the 8 bits of
the main value, and the ninth bit is taken from
TB8. If TB8 is set and a value is written to the
serial port, the data’s bits will be written to the
serial line followed by a "set" ninth bit. If TB8 is
clear the ninth bit will be "clear."

The RB8 also operates in modes 2 and 3
and functions essentially the same way as TB8,

but on the reception side. When a byte is received
in modes 2 or 3, a total of nine bits are received. In
this case, the first eight bits received are the data
of the serial byte received and the value of the
ninth bit received will be placed in RB8.

TI means "Transmit Interrupt." When a
program writes a value to the serial port, a certain
amount of time will pass before the individual bits
of the byte are "clocked out" the serial port. If the
program were to write another byte to the serial
port before the first byte was completely output,
the data being sent would be garbled. Thus, the
8051 lets the program know that it has "clocked
out" the last byte by setting the TI bit. When the TI
bit is set, the program may assume that the serial
port is "free" and ready to send the next byte.

Finally, the RI bit means "Receive
Interrupt." It funcions similarly to the "TI" bit, but it
indicates that a byte has been received. That is to
say, whenever the 8051 has received a complete
byte it will trigger the RI bit to let the program know
that it needs to read the value quickly, before
another byte is read.

Setting the Serial Port Baud Rate

Once the Serial Port Mode has been
configured, as explained above, the program must
configure the serial port’s baud rate. This only
applies to Serial Port modes 1 and 3. The Baud
Rate is determined based on the oscillator’s
frequency when in mode 0 and 2. In mode 0, the
baud rate is always the oscillator frequency
divided by 12. This means if you’re crystal is
11.059Mhz, mode 0 baud rate will always be
921,583 baud. In mode 2 the baud rate is always
the oscillator frequency divided by 64, so a
11.059Mhz crystal speed will yield a baud rate of
172,797.

In modes 1 and 3, the baud rate is
determined by how frequently timer 1 overflows.
The more frequently timer 1 overflows, the higher
the baud rate. There are many ways one can
cause timer 1 to overflow at a rate that determines
a baud rate, but the most common method is to
put timer 1 in 8-bit auto-reload mode (timer mode
2) and set a reload value (TH1) that causes Timer
1 to overflow at a frequency appropriate to
generate a baud rate.

To determine the value that must be
placed in TH1 to generate a given baud rate, we
may use the following equation (assuming
PCON.7 is clear).

TH1 = 256 - ((Crystal / 384) / Baud)

If PCON.7 is set then the baud rate is
effectively doubled, thus the equation becomes:

TH1 = 256 - ((Crystal / 192) / Baud)

For example, if we have an 11.059Mhz
crystal and we want to configure the serial port to
19,200 baud we try plugging it in the first equation:

TH1 = 256 - ((Crystal / 384) / Baud)
TH1 = 256 - ((11059000 / 384) / 19200)
TH1 = 256 - ((28,799) / 19200)
TH1 = 256 - 1.5 = 254.5

As you can see, to obtain 19,200 baud on
a 11.059Mhz crystal we’d have to set TH1 to
254.5. If we set it to 254 we will have achieved
14,400 baud and if we set it to 255 we will have
achieved 28,800 baud. Thus we’re stuck...

But not quite... to achieve 19,200 baud we
simply need to set PCON.7 (SMOD). When we do
this we double the baud rate and utilize the second
equation mentioned above. Thus we have:

TH1 = 256 - ((Crystal / 192) / Baud)
TH1 = 256 - ((11059000 / 192) / 19200)
TH1 = 256 - ((57699) / 19200)
TH1 = 256 - 3 = 253

Here we are able to calculate a nice, even
TH1 value. Therefore, to obtain 19,200 baud with
an 11.059MHz crystal we must:

1) Configure Serial Port mode 1 or 3.
2) Configure Timer 1 to timer mode 2 (8-bit auto-

reload).
3) Set TH1 to 253 to reflect the correct frequency

for 19,200 baud.
4) Set PCON.7 (SMOD) to double the baud rate.

24

Writing to the Serial Port

Once the Serial Port has been propertly
configured as explained above, the serial port is
ready to be used to send data and receive data. If
you thought that configuring the serial port was
simple, using the serial port will be a breeze.

To write a byte to the serial port one must
simply write the value to the SBUF (99h) SFR. For
example, if you wanted to send the letter "A" to the
serial port, it could be accomplished as easily as:

MOV SBUF,#’A’

Upon execution of the above instruction
the 8051 will begin transmitting the character via
the serial port. Obviously transmission is not
instantaneous--it takes a measureable amount of
time to transmit. And since the 8051 does not have
a serial output buffer we need to be sure that a
character is completely transmitted before we try
to transmit the next character.

The 8051 lets us know when it is done
transmitting a character by setting the TI bit in
SCON. When this bit is set we know that the last
character has been transmitted and that we may
send the next character, if any. Consider the
following code segment:

CLR TI ;Be sure the bit is initially clear
MOV SBUF,#’A’ ;Send the letter ‘A’ to the serial
port
JNB TI,$;Pause until the RI bit is set.

The above three instructions will
successfully transmit a character and wait for the
TI bit to be set before continuing. The last
instruction says "Jump if the TI bit is not set to $"--
$, in most assemblers, means "the same address
of the current instruction." Thus the 8051 will
pause on the JNB instruction until the TI bit is set
by the 8051 upon successful transmission of the
character.

Reading the Serial Port

Reading data received by the serial port is
equally easy. To read a byte from the serial port
one just needs to read the value stored in the
SBUF (99h) SFR after the 8051 has automatically
set the RI flag in SCON.

For example, if your program wants to wait
for a character to be received and subsequently
read it into the Accumulator, the following code
segment may be used:

JNB RI,$;Wait for the 8051 to set the RI flag
MOV A,SBUF ;Read the character from the serial port

The first line of the above code segment
waits for the 8051 to set the RI flag; again, the
8051 sets the RI flag automatically when it
receives a character via the serial port. So as long
as the bit is not set the program repeats the "JNB"
instruction continuously.

Once the RI bit is set upon character
reception the above condition automatically fails
and program flow falls through to the "MOV"
instruction which reads the value.

25

8051 Tutorial: Interrupts

As stated earlier, program flow is always
sequential, being altered only by those instructions
which expressly cause program flow to deviate in
some way. However, interrupts give us a
mechanism to "put on hold" the normal program
flow, execute a subroutine, and then resume
normal program flow as if we had never left it. This
subroutine, called an interrupt handler, is only
executed when a certain event (interrupt) occurs.
The event may be one of the timers "overflowing,"
receiving a character via the serial port,
transmitting a character via the serial port, or one
of two "external events." The 8051 may be
configured so that when any of these events occur
the main program is temporarily suspended and
control passed to a special section of code which
presumably would execute some function related
to the event that occured. Once complete, control
would be returned to the original program. The
main program never even knows it was
interrupted.

The ability to interrupt normal program
execution when certain events occur makes it
much easier and much more efficient to handle
certain conditions. If it were not for interrupts we
would have to manually check in our main
program whether the timers had overflown,
whether we had received another character via the
serial port, or if some external event had occured.
Besides making the main program ugly and hard
to read, such a situation would make our program
inefficient since we’d be burning precious
"instruction cycles" checking for events that
usually don’t happen.

For example, let’s say we have a large
16k program executing many subroutines
performing many tasks. Let’s also suppose that we
want our program to automatically toggle the P3.0
port every time timer 0 overflows. The code to do
this isn’t too difficult:

JNB TF0,SKIP_TOGGLE
CPL P3.0
CLR TF0
SKIP_TOGGLE: ...

Since the TF0 flag is set whenever timer 0
overflows, the above code will toggle P3.0 every
time timer 0 overflows. This accomplishes what we
want, but is inefficient. The JNB instruction
consumes 2 instruction cycles to determine that
the flag is not set and jump over the unnecessary
code. In the event that timer 0 overflows, the CPL
and CLR instruction require 2 instruction cycles to
execute. To make the math easy, let’s say the rest
of the code in the program requires 98 instruction
cycles. Thus, in total, our code consumes 100
instruction cycles (98 instruction cycles plus the 2
that are executed every iteration to determine
whether or not timer 0 has overflowed). If we’re in

16-bit timer mode, timer 0 will overflow every
65,536 machine cycles. In that time we would
have performed 655 JNB tests for a total of 1310
instruction cycles, plus another 2 instruction cycles
to perform the code. So to achieve our goal we’ve
spent 1312 instruction cycles. So 2.002% of our
time is being spent just checking when to toggle
P3.0. And our code is ugly because we have to
make that check every iteration of our main
program loop.

Luckily, this isn’t necessary. Interrupts let
us forget about checking for the condition. The
microcontroller itself will check for the condition
automatically and when the condition is met will
jump to a subroutine (called an interrupt handler),
execute the code, then return. In this case, our
subroutine would be nothing more than:

CPL P3.0
RETI

First, you’ll notice the CLR TF0 command
has disappeared. That’s because when the 8051
executes our "timer 0 interrupt routine," it
automatically clears the TF0 flag. You’ll also notice
that instead of a normal RET instruction we have a
RETI instruction. The RETI instruction does the
same thing as a RET instruction, but tells the 8051
that an interrupt routine has finished. You must
always end your interrupt handlers with RETI.

Thus, every 65536 instruction cycles we
execute the CPL instruction and the RETI
instruction. Those two instructions together require
3 instruction cycles, and we’ve accomplished the
same goal as the first example that required 1312
instruction cycles. As far as the toggling of P3.0
goes, our code is 437 times more efficient! Not to
mention it’s much easier to read and understand
because we don’t have to remember to always
check for the timer 0 flag in our main program. We
just setup the interrupt and forget about it, secure
in the knowledge that the 8051 will execute our
code whenever it’s necessary.

The same idea applies to receiving data
via the serial port. One way to do it is to
continuously check the status of the RI flag in an
endless loop. Or we could check the RI flag as
part of a larger program loop. However, in the
latter case we run the risk of missing characters--
what happens if a character is received right after
we do the check, the rest of our program executes,
and before we even check RI a second character
has come in. We will lose the first character. With
interrupts, the 8051 will put the main program "on
hold" and call our special routine to handle the
reception of a character. Thus, we neither have to
put an ugly check in our main code nor will we lose
characters.

26

What Events Can Trigger Interrupts, and where do they go?

We can configure the 8051 so that any of
the following events will cause an interrupt:

• Timer 0 Overflow.
• Timer 1 Overflow.
• Reception/Transmission of Serial

Character.
• External Event 0.
• External Event 1.

In other words, we can configure the 8051
so that when Timer 0 Overflows or when a
character is sent/received, the appropriate
interrupt handler routines are called.

Obviously we need to be able to
distinguish between various interrupts and
executing different code depending on what
interrupt was triggered. This is accomplished by
jumping to a fixed address when a given interrupt
occurs.

Interrupt Flag Interrupt Handler Address
External 0 IE0 0003h

Timer 0 TF0 000Bh
External 1 IE1 0013h

Timer 1 TF1 001Bh
Serial RI/TI 0023h

By consulting the above chart we see that
whenever Timer 0 overflows (i.e., the TF0 bit is
set), the main program will be temporarily

suspended and control will jump to 000BH. It is
assumed that we have code at address 0003H
that handles the situation of Timer 0 overflowing.

Setting Up Interrupts

By default at powerup, all interrupts are
disabled. This means that even if, for example, the
TF0 bit is set, the 8051 will not execute the
interrupt. Your program must specifically tell the

8051 that it wishes to enable interrupts and
specifically which interrupts it wishes to enable.

Your program may enable and disable
interrupts by modifying the IE SFR (A8h):

Bit Name Bit Address Explanation of Function
7 EA AFh Global Interrupt Enable/Disable
6 - AEh Undefined
5 - ADh Undefined
4 ES ACh Enable Serial Interrupt
3 ET1 ABh Enable Timer 1 Interrupt
2 EX1 AAh Enable External 1 Interrupt
1 ET0 A9h Enable Timer 0 Interrupt
0 EX0 A8h Enable External 0 Interrupt

As you can see, each of the 8051’s
interrupts has its own bit in the IE SFR. You
enable a given interrupt by setting the
corresponding bit. For example, if you wish to
enable Timer 1 Interrupt, you would execute
either:

MOV IE,#08h || SETB ET1

Both of the above instructions set bit 3 of
IE, thus enabling Timer 1 Interrupt. Once Timer 1
Interrupt is enabled, whenever the TF1 bit is set,
the 8051 will automatically put "on hold" the main
program and execute the Timer 1 Interrupt
Handler at address 001Bh.

However, before Timer 1 Interrupt (or any
other interrupt) is truly enabled, you must also set
bit 7 of IE. Bit 7, the Global Interupt
Enable/Disable, enables or disables all interrupts
simultaneously. That is to say, if bit 7 is cleared
then no interrupts will occur, even if all the other

bits of IE are set. Setting bit 7 will enable all the
interrupts that have been selected by setting other
bits in IE. This is useful in program execution if you
have time-critical code that needs to execute. In
this case, you may need the code to execute from
start to finish without any interrupt getting in the
way. To accomplish this you can simply clear bit 7
of IE (CLR EA) and then set it after your time-
criticial code is done.

So, to sum up what has been stated in this
section, to enable the Timer 1 Interrupt the most
common approach is to execute the following two
instructions:

SETB ET1
SETB EA

Thereafter, the Timer 1 Interrupt Handler
at 01Bh will automatically be called whenever the
TF1 bit is set (upon Timer 1 overflow).

27

Polling Sequence

The 8051 automatically evaluates whether
an interrupt should occur after every instruction.
When checking for interrupt conditions, it checks
them in the following order:

1) External 0 Interrupt
2) Timer 0 Interrupt
3) External 1 Interrupt
4) Timer 1 Interrupt
5) Serial Interrupt

Interrupt Priorities

The 8051 offers two levels of interrupt
priority: high and low. By using interrupt priorities
you may assign higher priority to certain interrupt
conditions.

For example, you may have enabled
Timer 1 Interrupt which is automatically called
every time Timer 1 overflows. Additionally, you
may have enabled the Serial Interrupt which is
called every time a character is received via the
serial port. However, you may consider that
receiving a character is much more important than

the timer interrupt. In this case, if Timer 1 Interrupt
is already executing you may wish that the serial
interrupt itself interrupts the Timer 1 Interrupt.
When the serial interrupt is complete, control
passes back to Timer 1 Interrupt and finally back
to the main program. You may accomplish this by
assigning a high priority to the Serial Interrupt and
a low priority to the Timer 1 Interrupt.

Interrupt priorities are controlled by the IP
SFR (B8h). The IP SFR has the following format:

Bit Name Bit Address Explanation of Function
7 - - Undefined
6 - - Undefined
5 - - Undefined
4 PS BCh Serial Interrupt Priority
3 PT1 BBh Timer 1 Interrupt Priority
2 PX1 BAh External 1 Interrupt Priority
1 PT0 B9h Timer 0 Interrupt Priority
0 PX0 B8h External 0 Interrupt Priority

When considering interrupt priorities, the
following rules apply:
• Nothing can interrupt a high-priority interrupt--

not even another high priority interrupt.
• A high-priority interrupt may interrupt a low-

priority interrupt.

• A low-priority interrupt may only occur if no
other interrupt is already executing.

• If two interrupts occur at the same time, the
interrupt with higher priority will execute first. If
both interrupts are of the same priority the
interrupt which is serviced first by polling
sequence will be executed first.

What Happens When an Interrupt Occurs?

When an interrupt is triggered, the
following actions are taken automatically by the
microcontroller:
• The current Program Counter is saved on the

stack, low-byte first.
• Interrupts of the same and lower priority are

blocked.
• In the case of Timer and External interrupts,

the corresponding interrupt flag is set.

• Program execution transfers to the
corresponding interrupt handler vector
address.

• The Interrupt Handler Routine executes.

Take special note of the third step: If the
interrupt being handled is a Timer or External
interrupt, the microcontroller automatically clears
the interrupt flag before passing control to your
interrupt handler routine.

What Happens When an Interrupt Ends?

An interrupt ends when your program
executes the RETI instruction. When the RETI
instruction is executed the following actions are
taken by the microcontroller:

• Two bytes are popped off the stack into the
Program Counter to restore normal program
execution.

• Interrupt status is restored to its pre-interrupt
status.

28

Serial Interrupts

Serial Interrupts are slightly different than
the rest of the interrupts. This is due to the fact
that there are two interrupt flags: RI and TI. If
either flag is set, a serial interrupt is triggered. As
you will recall from the section on the serial port,
the RI bit is set when a byte is received by the
serial port and the TI bit is set when a byte has
been sent.

This means that when your serial interrupt
is executed, it may have been triggered because
the RI flag was set or because the TI flag was set--
or because both flags were set. Thus, your routine
must check the status of these flags to determine
what action is appropriate. Also, since the 8051
does not automatically clear the RI and TI flags
you must clear these bits in your interrupt handler.

INT_SERIAL: JNB RI,CHECK_TI ;If the RI flag is not set, we jump to check TI
MOV A,SBUF ;If we got to this line, it’s because the RI bit *was* set
CLR RI ;Clear the RI bit after we’ve processed it

CHECK_TI: JNB TI,EXIT_INT ;If the TI flag is not set, we jump to the exit point
CLR TI ;Clear the TI bit before we send another character
MOV SBUF,#’A’ ;Send another character to the serial port

EXIT_INT: RETI

As you can see, our code checks the
status of both interrupts flags. If both flags were
set, both sections of code will be executed. Also
note that each section of code clears its
corresponding interrupt flag. If you forget to clear

the interrupt bits, the serial interrupt will be
executed over and over until you clear the bit.
Thus it is very important that you always clear the
interrupt flags in a serial interrupt.

Important Interrupt Consideration: Register Protection

One very important rule applies to all
interrupt handlers: Interrupts must leave the
processor in the same state as it was in when the
interrupt initiated.

Remember, the idea behind interrupts is
that the main program isn’t aware that they are
executing in the "background." However, consider
the following code:

CLR C ;Clear carry
MOV A,#25h ;Load the accumulator with 25h
ADDC A,#10h ;Add 10h, with carry

After the above three instructions are
executed, the accumulator will contain a value of
35h.

But what would happen if right after the
MOV instruction an interrupt occured. During this
interrupt, the carry bit was set and the value of the
accumulator was changed to 40h. When the
interrupt finished and control was passed back to
the main program, the ADDC would add 10h to
40h, and additionally add an additional 1h because
the carry bit is set. In this case, the accumulator
will contain the value 51h at the end of execution.

In this case, the main program has
seemingly calculated the wrong answer. How can
25h + 10h yield 51h as a result? It doesn’t make
sense. A programmer that was unfamiliar with
interrupts would be convinced that the
microcontroller was damaged in some way,
provoking problems with mathematical
calculations.

What has happened, in reality, is the
interrupt did not protect the registers it used.

Restated: An interrupt must leave the
processor in the same state as it was in when the
interrupt initiated.

What does this mean? It means if your
interrupt uses the accumulator, it must insure that

the value of the accumulator is the same at the
end of the interrupt as it was at the beginning. This
is generally accomplished with a PUSH and POP
sequence. For example:

PUSH ACC
PUSH PSW
MOV A,#0FFh
ADD A,#02h
POP PSW
POP ACC

The guts of the interrupt is the MOV
instruction and the ADD instruction. However,
these two instructions modify the Accumulator (the
MOV instruction) and also modify the value of the
carry bit (the ADD instruction will cause the carry
bit to be set). Since an interrupt routine must
guarantee that the registers remain unchanged by
the routine, the routine pushes the original values
onto the stack using the PUSH instruction. It is
then free to use the registers it protected to its
heart’s content. Once the interrupt has finished its
task, it pops the original values back into the
registers. When the interrupt exits, the main
program will never know the difference because
the registers are exactly the same as they were
before the interrupt executed.

29

In general, your interrupt routine must
protect the following registers:

• PSW
• DPTR (DPH/DPL)
• PSW
• ACC
• B
• Registers R0-R7

Remember that PSW consists of many
individual bits that are set by various 8051
instructions. Unless you are absolutely sure of
what you are doing and have a complete
understanding of what instructions set what bits, it
is generally a good idea to always protect PSW by
pushing and popping it off the stack at the
beginning and end of your interrupts.

Note also that most assemblers (in fact,
ALL assemblers that I know of) will not allow you
to execute the instruction:

PUSH R0

This is due to the fact that depending on
which register bank is selected, R0 may refer to
either internal ram address 00h, 08h, 10h, or 18h.
R0, in and of itself, is not a valid memory address
that the PUSH and POP instructions can use.

Thus, if you are using any "R" register in
your interrupt routine, you will have to push that
register’s absolute address onto the stack instead
of just saying PUSH R0. For example, instead of
PUSH R0 you would execute:

PUSH 00h

Of course, this only works if you’ve
selected the default register set. If you are using
an alternate register set, you must PUSH the
address which corresponds to the register you are
using.

Common Problems with Interrupts

Interrupts are a very powerful tool
available to the 8051 developer, but when used
incorrectly they can be a source of a huge number
of debugging hours. Errors in interrupt routines are
often very difficult to diagnose and correct.

If you are using interrupts and your
program is crashing or does not seem to be
performing as you would expect, always review
the following interrupt-related issues:
• Register Protection: Make sure you are

protecting all your registers, as explained
above. If you forget to protect a register that
your main program is using, very strange
results may occur. In our example above we
saw how failure to protect registers caused the
main program to apparently calculate that 25h
+ 10h = 51h. If you witness problems with
registers changing values unexpectedly or
operations producing "incorrect" values, it is
very likely that you’ve forgotten to protect
registers. ALWAYS PROTECT YOUR
REGISTERS.

• Forgetting to restore protected values:
Another common error is to push registers
onto the stack to protect them, and then forget
to pop them off the stack before exiting the
interrupt. For example, you may push ACC, B,
and PSW onto the stack in order to protect

them and subsequently pop only ACC and
PSW off the stack before exiting. In this case,
since you forgot to restore the value of "B", an
extra value remains on the stack. When you
execute the RETI instruction the 8051 will use
that value as the return address instead of the
correct value. In this case, your program will
almost certainly crash. ALWAYS MAKE SURE
YOU POP THE SAME NUMBER OF VALUES
OFF THE STACK AS YOU PUSHED ONTO
IT.

Using RET instead of RETI: Remember
that interrupts are always terminated with the RETI
instruction. It is easy to inadvertantly use the RET
instruction instead. However, the RET instruction
will not end your interrupt. Usually, using a RET
instead of a RETI will cause the illusion of your
main program running normally, but your interrupt
will only be executed once. If it appears that your
interrupt mysteriously stops executing, verify that
you are exiting with RETI.

Simulators, such as Vault Information
Services’ 8052 Simulator for Windows, contain
special features which will notify you if you fail to
protect registers or commit other common
interrupt-related errors.

http://www.vaultbbs.com/sim8052
http://www.vaultbbs.com/sim8052

	8051 Tutorial: Introduction
	8051 Tutorial: Types of Memory
	8051 Tutorial: SFRs
	8051 Tutorial: Basic Registers
	8051 Tutorial: Addressing Modes
	8051 Tutorial: Program Flow
	8051 Tutorial: Instruction Set, Timing, and Low-Level Info
	8051 Tutorial: Timers
	8051 Tutorial: Serial Communication
	8051 Tutorial: Interrupts

