PRACTICAL DESIGN TECHNIQUES FOR SENSOR SIGNAL CONDITIONING

- 1 Introduction
 - 2 Bridge Circuits
 - **3 Amplifiers for Signal Conditioning**
 - 4 Strain, Force, Pressure, and Flow Measurements
 - 5 High Impedance Sensors
 - 6 **Position and Motion Sensors**
 - 7 **Temperature Sensors**
 - 8 ADCs for Signal Conditioning
 - 9 Smart Sensors
 - **10 Hardware Design Techniques**

SENSOR OVERVIEW

Sensors:

Convert a Signal or Stimulus (Representing a Physical Property) into an Electrical Output

■ Transducers:

Convert One Type of Energy into Another

■ The Terms are often Interchanged

- Active Sensors Require an External Source of Excitation: RTDs, Strain-Gages
- Passive (Self-Generating) Sensors do not: Thermocouples, Photodiodes

TYPICAL SENSORS AND THEIR OUTPUTS

PROPERTY	SENSOR	ACTIVE/	OUTPUT
		PASSIVE	
Temperature	Thermocouple	Passive	Voltage
	Silicon	Active	Voltage/Current
	RTD	Active	Resistance
	Thermistor	Active	Resistance
Force / Pressure	Strain Gage	Active	Resistance
	Piezoelectric	Passive	Voltage
Acceleration	Accelerometer	Active	Capacitance
Position	LVDT	Active	AC Voltage
Light Intensity	Photodiode	Passive	Current

1.3

STANDARDIZATION AT THE DIGITAL INTERFACE USING SMART SENSORS

BASIC ELEMENTS IN A "SMART" SENSOR

THE EVEN SMARTER SENSOR

