PRACTICAL DESIGN TECHNIQUES FOR SENSOR SIGNAL CONDITIONING

- 1 Introduction
- 2 Bridge Circuits
- 3 Amplifiers for Signal Conditioning
- 4 Strain, Force, Pressure, and Flow Measurements
- 5 High Impedance Sensors
- 6 **Position and Motion Sensors**
- 7 **Temperature Sensors**
- 8 ADCs for Signal Conditioning
- 9 Smart Sensors
- 10 Hardware Design Techniques

RESISTOR TEMPERATURE COEFFICIENT MISMATCHES CAUSE GAIN VARIATION WITH TEMPERATURE

Temperature change of 10°C causes gain change of 250ppm

This is 1LSB in a 12-bit system and a disaster in a 16-bit system

RESISTOR SELF-HEATING EVEN IN MATCHED RESISTORS CAN CAUSE GAIN VARIATION WITH INPUT LEVEL

R1, R2 Thermal Resistance = 125°C / W
Temperature of R1 will rise by 1.24°C, P_D = 9.9mW
Temperature rise of R2 is negligible, P_D = 0.1mW

Gain is altered by 31ppm, or 1/2 LSB @ 14-bits

RESISTORS CONTAIN THERMOCOUPLES

TYPICAL RESISTOR THERMOCOUPLE EMFs

- $\blacksquare CARBON COMPOSITION \qquad \approx 400 \ \mu V/ \ ^{\circ}C$
- METAL FILM $\approx 20 \ \mu V/ \ ^{\circ}C$
- EVENOHM OR MANGANIN WIREWOUND $\approx 2 \mu V/°C$
- **RCD Components HP-Series** \approx 0.05 μ V/ °C

AVOIDING THERMAL GRADIENTS MINIMIZES THERMOCOUPLE ERROR VOLTAGES

PROPER ORIENTATION OF SURFACE MOUNT RESISTORS MINIMIZES THERMOCOUPLE ERROR VOLTAGE

PARASITIC THERMOCOUPLES IN SIMPLE CIRCUIT

a

GROUND PLANES ARE MANDATORY!

Use Large Area Ground (and Power) Planes for Low Impedance Current Return Paths (Must Use at Least a Double-Sided Board!)

Double-Sided Boards:

- Avoid High-Density Interconnection Crossovers and Feedthroughs Which Reduce Ground Plane Area
- ◆ Keep > 75% Board Area on One Side for Ground Plane
- Multilayer Boards
 - Dedicate at Least One Layer for the Ground Plane
 - Dedicate at Least One Layer for the Power Plane
- Use at Least 30% to 40% of PCB Connector Pins for Ground
- Continue the Ground Plane on the Backplane Motherboard to Power Supply Return

a

a

GROUNDING AND DECOUPLING POINTS

SAMPLING CLOCK DISTRIBUTION FROM DIGITAL TO ANALOG GROUND PLANES

ANALOG AND DIGITAL CIRCUITS SHOULD BE PARTITIONED ON PCB LAYOUT

SWITCHING REGULATOR NOISE REDUCTION TOOLS

- Capacitors
- Inductors
- Ferrites
- Resistors
- Linear Post Regulation
- Proper Layout and Grounding Techniques
- PHYSICAL SEPARATION FROM SENSITIVE ANALOG CIRCUITS!!

TYPES OF CAPACITORS

	Aluminum Electrolytic (General Purpose)	Aluminum Electrolytic (Switching Type)	Tantalum Electrolytic	OS-CON Electrolytic	Polyester (Stacked Film)	Ceramic (Multilayer)
Size	100 µF	120 µF	120 µF	100 µF	1 µF	0.1 µF
Rated Voltage	25 V	25 V	20 V	20 V	400 V	50 V
ESR	0.6 Ω @ 100 kHz	0.18 Ω @ 100 kHz	0.12 <u>Ω</u> @ 100 kHz	0.02 Ω @ 100 kHz	0.11 <u>Ω</u> @ 1 MHz	0.12 Ω @ 1 MHz
Operating Frequency (*)	≅ 100 kHz	≅ 500 kHz	≅ 1 MHz	≅ 1 MHz	≅ 10 MHz	_≅ 1 GHz

(*) Upper frequency strongly size and package dependent

ELECTROLYTIC CAPACITOR IMPEDANCE VERSUS FREQUENCY

FERRITES SUITABLE FOR HIGH FREQUENCY FILTERS

- Ferrites Good for Frequencies Above 25kHz
- Many Sizes and Shapes Available Including Leaded "Resistor Style"
- Ferrite Impedance at High Frequencies Primarily Resistive --Ideal for HF Filtering
- Low DC Loss: Resistance of Wire Passing Through Ferrite is Very Low
- High Saturation Current Versions Available
- Choice Depends Upon:
 - Source and Frequency of Interference
 - ◆ Impedance Required at Interference Frequency
 - Environmental: Temperature, AC and DC Field Strength, Size / Space Available
- Always Test the Design!

IMPEDANCE OF FERRITE BEADS

Courtesy: Fair-Rite Products Corp, Wallkill, NY (http://www.fair-rite.com)

PROPER PROBING TECHNIQUES

C2 = 100μ F/20V LEADED TANTALUM, KEMET T356-SERIES, ESR = 0.6Ω **10.22**

a

ADP1148 BUCK OUTPUT WAVEFORM

C1 = 1 μ F CERAMIC + 220 μ F/25V GENERAL PURPOSE AL ELECTROLYTIC C2 = 100 μ F/20V LEADED TANTALUM, KEMET T356-SERIES (ESR = 0.6 Ω)

C1 = 1µF CERAMIC + 220µF/25V GENERAL PURPOSE AL ELECTROLYTIC C2 = 100µF/20V LEADED TANTALUM, KEMET T356-SERIES (ESR = 0.6Ω)

OUTPUT FILTER L_F =COILTRONICS CTX-50-4 C_F = 100µF/20V LEADED TANTALUM, KEMET T356-SERIES

WAVEFORMS FOR ADP1148 BUCK REGULATOR DRIVING ADP3310 LOW DROPOUT REGULATOR

ADP1148 OUTPUT (ADP3310 INPUT)

ADP3310 OUTPUT

VERTICAL SCALE: 10mV/DIV HORIZ. SCALE: 5µs/DIV VERTICAL SCALE: 10mV/DIV HORIZ. SCALE: 5µs/DIV

SWITCHING SUPPLY FILTER SUMMARY

- Proper Layout and Grounding (using Ground Plane) Mandatory
- Low ESL/ESR Capacitors Give Best Results
- Parallel Capacitors Lower ESR/ESL and Increase Capacitance
- External LC Filters Very Effective in Reducing Ripple
- Linear Post Regulation Effective for Noise Reduction and Best Regulation
- Completely Analytical Approach Difficult, Prototyping is Required for Optimum Results
- Once Design is Finalized, Do Not Switch Vendors or Use Parts Substitutions Without First Verifying Their Performance in Circuit
- High Frequency Localized Decoupling at IC Power Pins is Still Required

POWER LINE DISTURBANCES CAN GENERATE EMI

Reprinted from EDN Magazine (January 20, 1994), © CAHNERS PUBLISHING COMPANY 1995, A Division of Reed Publishing USA

COMMON-MODE AND DIFFERENTIAL MODE PROTECTION

SCHEMATIC FOR A COMMERCIAL POWER LINE FILTER

Reprinted from EDN Magazine (January 20, 1994), © CAHNERS PUBLISHING COMPANY 1995, A Division of Reed Publishing USA

FILTERING AMPLIFIER INPUTS TO PREVENT RFI RECTIFICATION

> 100 × SIGNAL BANDWIDTH

FILTERING IN-AMP INPUTS

COMMON AND DIFFERENTIAL MODE FILTER WITH AD620

COMMON MODE CHOKE WITH AD620

FILTERING AMPLIFIER OUTPUTS PROTECTS AGAINST EMI/RFI EMISSION AND SUSCEPTIBILITY

^{10.35}

LINE TERMINATION SHOULD BE USED WHEN LENGTH OF PCB TRACK EXCEEDS 2 inches/ns

Reprinted from EDN Magazine (January 20, 1994), © CAHNERS PUBLISHING COMPANY 1995, A Division of Reed Publishing USA

DIGITAL IC FAMILY	t _r , t _s (ns)	PCB TRACK LENGTH (inches)	PCB TRACK LENGTH (cm)
GaAs	0.1	0.2	0.5
ECL	0.75	1.5	3.8
Schottky	3	6	15
FAST	3	6	15
AS	3	6	15
AC	4	8	20
ALS	6	12	30
LS	8	16	40
TTL	10	20	50
НС	18	36	90

t_r = rise time of signal in ns

 $t_f = fall time of signal in ns$

For analog signals @ f_{max} , calculate $t_r = t_f = 0.35$ / fmax

REFLECTION AND ABSORPTION ARE THE TWO PRINCIPAL SHIELDING MECHANISMS

Reprinted from EDN Magazine (January 20, 1994), © CAHNERS PUBLISHING COMPANY 1995, A Division of Reed Publishing USA

CONDUCTIVITY AND PERMEABILITY FOR VARIOUS SHIELDING MATERIALS

MATERIAL	RELATIVE CONDUCTIVITY	RELATIVE PERMEABILITY	
Copper	1	1	
Aluminum	1	0.61	
Steel	0.1	1,000	
Mu-Metal	0.03	20,000	

Conductivity: Ability to Conduct Electricity

Permeability: Ability to Absorb Magnetic Energy

"ELECTRICALLY LONG" OR "ELECTRICALLY SHORT" APPLICATION

Reprinted from EDN Magazine (January 20, 1994), © CAHNERS PUBLISHING COMPANY 1995, A Division of Reed Publishing USA

COAXIAL CABLE GROUNDING

a

ISOLATION USING OPTOISOLATORS

- Uses Light for Transmission Over a High Voltage Barrier
- The LED is the Transmitter, and the Phototransistor is the Receiver
- High Voltage Isolation: 5000V to 7000V
- Non-Linear -- Best for Digital or Frequency Information
- Rise and Fall-times can be 10 to 20µs in Slower Devices
- Example: Siemens IL-1 (http://www.siemens.com)

AD260/AD261 DIGITAL ISOLATORS

AD260/AD261 DIGITAL ISOLATOR KEY SPECIFICATIONS

- Isolation Test Voltage to 3.5kV RMS (AD260B/AD261B)
- Five Isolated Digital Lines Available in 6 Input/Output Configurations
- Logic Signal Frequency: 20MHz Max.
- Isolated Power Transformer: 37V p-p, 1.5W (AD260)
- Waveform Edge Transmission Symmetry: ±1ns
- Propagation Delay: 14ns
- Rise and Fall-Times < 5ns</p>

INPUT OVERVOLTAGE

- INPUT SHOULD NOT EXCEED ABSOLUTE MAXIMUM RATINGS (Usually Specified With Respect to Supply Voltages)
- A Common Specification Requires the Input Signal Remain Within 0.3V of the Supply Rails
- Input Stage Conduction Current Should Be Limited (Rule of Thumb: ≤ 5mA Unless Otherwise Specified)
- Avoid Reverse Bias Junction Breakdown in Input Stage Junctions
- Differential and Common Mode Ratings May Differ
- No Two Amplifiers are Exactly the Same
- Some ICs Contain Input Protection (Voltage Clamps, Current Limits, or Both), but Absolute Maximum Ratings Must Still Be Observed

AD620 SIMPLIFIED SCHEMATIC

AD620 EQUIVALENT INPUT CIRCUIT WITH OVERVOLTAGE

GENERALIZED EXTERNAL PROTECTION FOR INSTRUMENTATION AMPLIFIER INPUTS V_{POS} R_{LIMIT} + * V_{OUT} R_G V_{IN} **IN-AMP** V_{REF} R_{LIMIT} ***ZENER DIODES** OR TVSs (TransZorbs™) V_{NEG} LIMIT V_{DIFF}

IF REQUIRED

*Additional External Schottky Diodes Allow Lower Values of R_{LIMIT}

INPUT PROTECTION FOR SINGLE-SUPPLY ADCs WITH THIN FILM RESISTOR INPUT ATTENUATORS

ADG465, ADG466, and ADG467 CHANNEL PROTECTORS KEY SPECIFICATIONS

- **Low On-Resistance (50** Ω for ADG465, 80 Ω for ADG466/467)
- On-Resistance Match: 3%
- 44V Maximum Supply Voltage, V_{DD} V_{SS}
- Fault and Overvoltage Protection up to ±40V
- Positive Overvoltages Clamped at V_{DD} 1.5V
- Negative Overvoltages Clamped at V_{SS} + 2V
- Signal Paths Open-Circuit with Power Off
- Latch-Up Proof Construction

OVERVOLTAGE AND POWER SUPPLY SEQUENCING PROTECTION USING THE ADG466

a

EXAMPLES OF ELECTROSTATIC CHARGE GENERATION

- Walking Across a Carpet
 - ◆ 1000V 1500V Generated
- Walking Across a Vinyl Floor
 - ◆ 150V 250V Generated
- Handling Material Protected by Clear Plastic Covers
 - ◆ 400V 600V Generated
- Handling Polyethylene Bags
 - ◆ 1000V 2000V Generated
- Pouring Polyurethane Foam Into a Box
 - ◆ 1200V 1500V Generated
- Note: Assume 60% RH. For Low RH (30%), Generated Voltages Can Be >10 Times Those Listed Above

UNDERSTANDING ESD DAMAGE

ESD Failure Mechanisms:

- Dielectric or junction damage
- Surface charge accumulation
- Conductor fusing
- **ESD** Damage Can Cause:
 - ♦ Increased leakage
 - Degradation in performance
 - Functional failures of ICs.
- **ESD** Damage is often Cumulative:
 - For example, each ESD "zap" may increase junction damage until, finally, the device fails.

RECOGNIZING ESD SENSITIVE DEVICES

All static sensitive devices are sealed in protective packaging and marked with special handling instructions

SENSITIVE ELECTRONIC DEVICES

SENSITIVE ELECTRONIC DEVICES

DO NOT SHIP OR STORE NEAR STRONG ELECTROSTATIC, ELECTROMAGNETIC, MAGNETIC, OR RADIOACTIVE FIELDS DO NOT OPEN EXCEPT AT APPROVED FIELD FORCE PROTECTIVE WORK STATION

ESD STATEMENT ON DATA SHEETS OF MOST LINEAR AND MIXED-SIGNAL ICs

CAUTION

ESD (Electrostatic Discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADXXX features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WORKSTATION FOR HANDLING ESD-SENSITIVE DEVICES

Note: Conductive Table Top Sheet Resistance $\approx 1M\Omega$ / \Box

ESD PROTECTION REQUIRES A PARTNERSHIP BETWEEN THE IC SUPPLIER AND THE CUSTOMER

ANALOG DEVICES:

- Circuit Design and Fabrication -
- \downarrow Design and manufacture products with the highest level of ESD
- protection consistent with required analog and digital performance.
- Pack and Ship -
- \downarrow Pack in static dissipative material. Mark packages with ESD warning.

CUSTOMERS:

- Incoming Inspection -
- ↓ Inspect at grounded workstation. Minimize handling.
- Inventory Control -
- \downarrow Store in original ESD-safe packaging. Minimize handling.
- Manufacturing -
 - Deliver to work area in original ESD-safe packaging. Open packages only at
 - grounded workstation. Package subassemblies in static dissipative packaging.
- Pack and Ship -

Pack in static dissipative material if required. Replacement or optional boards may require special attention.

 \downarrow

RS-232 PORT IS VERY SUSCEPTIBLE TO ESD

- I-O Transceiver Is Directly in the Firing Line for Transients RS-232 Port Is Particularly Vulnerable
- I-O Port Is an Open Gateway in the Enclosure
- Harmonised Standards Are Now Mandatory Requirements in European Community

IEC 1000-4-x BASIC IMMUNITY STANDARDS FOR ELECTRONIC EQUIPMENT (NOT ICs!)

- IEC1000-4 Electromagnetic Compatibility EMC
- IEC1000-4-1 Overview of Immunity Tests
- IEC1000-4-2 Electrostatic Discharge Immunity (ESD)
- IEC1000-4-3 Radiated Radio-Frequency Electromagnetic Field Immunity
- IEC1000-4-4 Electrical Fast Transients (EFT)
- IEC1000-4-5 Lightening Surges
- IEC1000-4-6 Conducted Radio Frequency Disturbances above 9kHz
- **Compliance Marking:**

MIL STD 883B METHOD 3015.7 HUMAN BODY MODEL VERSUS IEC 1000-4-2 ESD TESTING

ESD TEST METHOD	R2	C1
Human Body Model MIL STD 883B Method 3015.7	1.5kΩ	100pF
IEC 1000-4-2	330 Ω	150pF

NOTE: CONTACT DISCHARGE VOLTAGE SPEC FOR IEC 1000-4-2 IS ±8kV

MIL-STD-883B, METHOD 3015.7 HUMAN BODY MODEL AND IEC 1000-4-2 ESD WAVEFORMS

CUSTOMER DESIGN PRECAUTIONS FOR ICs WHICH MUST OPERATE AT ESD-SUSCEPTIBLE INTERFACES

- Observe all Absolute Maximum Ratings on Data Sheet!
- Follow General Overvoltage Protection Recommendations
 - Add Series Resistance to Limit Currents
 - Add Zeners or Transient Voltage Supressors (TVS) TransZorbs™ for Extra Protection (http://www.gensemi.com)
- Purchase ESD-Specified Digital Interface Devices Such as
 - ADMXXX-E Series of RS-232 / RS-485 Drivers / Receivers (MIL-883B, Method 3015.7: 15kV, IEC 1000-4-2: 8kV)
- Read AN-397, "Electrically Induced Damage to Standard Linear Integrated Circuits: The Most Common Causes and the Associated Fixes to Prevent Reocurrence," by Niall Lyne - Available from Analog Devices, http://www.analog.com